
10/10 Lecture outline

⋆ Reading for today’s lecture: Luke p. 65-80; Tong p. 35-41.

• Last time: quantize the KG field theory in 3 + 1 dimensions. Write

φ(x) =

∫
d3k

(2π)3
1√
2ω~k

[a~ke
−ikx + a

†
~k
eikx],

Π(x) = φ̇(x) =

∫
d3k

(2π)3
(−i)

√
ω~k
2
[a~ke

−ikx − a
†
~k
eikx],

Then canonical quantization implies that

[a~k, a
†
~k′
] = (2π)3δ3(~k − ~k′),

creation and annihilation operators, with others vanishing. It will be useful to define

a(k) ≡
√
2ωka~k, so then the above becomes

φ(x) =

∫
d3k

(2π)32ω(k)
[a(k)e−ikx + a†(k)eikx],

[a(k), a†(k′)] = (2π)32ωkδ
3(~k − ~k′),

with the relativistic-invariant measures, creation and annihilation operators appearing.

The quantum field is a superposition of creation and annihilation operators.

• Define (following Heisenberg and Pauli’s backward looking notation)

φ(x) = φ+(x) + φ−(x),

with φ+ the term in the FT with the annihilation operators (positive frequency) and φ−

the term with the creation operators (negative frequency).

Define normal ordering : AB : for operators A and B to mean that the terms are

arranged so that the annihilation operators are on the right, so annihilates the vacuum.

So : φ+(x)φ−(y) := φ−(y)φ+(x). We’ll often define quantities to be normal ordered, e.g.

we take

H ≡: H :

∫
d3k

(2π)2(2ω)
ωa†(~k)a(~k),

~P ≡: ~P :=

∫
d3k

(2π)2(2ω)
~ka†(~k)a(~k),
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where we’re dropping the CC contributing term in H, as discussed last time. So Pµ|0〉 = 0

and Pµ|p1 . . . pn〉 = p
µ
tot|p1 . . . pn〉, where |p1 . . . pn〉 =

∏
n a

†(kn)|0〉 and pµtot =
∑

n p
µ
n.

• Causality? Compute [φ(x), φ(y)] = D(x− y)−D(y − x), where

〈0|φ(x)φ(y)|0〉 = D(x− y) ≡
∫

d3k

(2π)32ω(k)
e−ik(x−y).

Note that the commutator is a c-number, not an operator. Note also that 2i∂x0D(x− y)

is the integral that we saw in last lecture, for the probability amplitude to find a particle

having traveled with spacetime displacement (x−y)µ. For spacelike separation, (x−y)2 =

−r2, we here get D(x − y) = m
2π2r

K1(mr), with K1 a Bessel function. Recall that the

Bessel function has a simple pole when its argument vanishes, and exponentially decays at

infinity. Although D(x− y) ∼ exp(−m|~x− ~y|) is non-vanishing outside the forward light

cone, the above difference is not: for spacelike separation, D(x−y)−D(y−x) = 0. Good.

It’s non-vanishing for timelike separation.

• Get more interesting theories by adding interactions, e.g. V (φ) = 1
2
m2φ2 + λφ4,

treat 2nd term as a perturbation. We can consider perturbative solutions in both classical

or quantum field theory. The starting point is the green’s function for the theory with a

forcing function source:

• Consider L = 1
2∂φ

2 − 1
2m

2φ2 − ρφ, where ρ is a classical source. Solve by φ =

φ0 + i
∫
d4yD(x− y)φ(y), where φ0 is a solution of the homogeneous KG equation and the

green’s function D(x− y) satisfies

(∂2x +m2)D(x− y) = −iδ4(x− y).

By a F.T., get

D?(x− y) =

∫
d4k

(2π)4
i

k2 −m2
e−ik(x−y).

Consider the k0 integral in the complex plane. There are poles at k0 = ±ωk, where

ωk ≡ +
√
~k2 +m2. There are choices about whether the contour goes above or below the

poles, and that’s what the ? label indicates.

Ended here. Continue next time:

Going above both poles gives the retarded green’s function, DR(x−y) which vanishes

for x0 < y0. Considering x0 > y0, get that

DR(x− y) = θ(x0 − y0)

∫
d3k

(2π)32ωk

(e−ik(x−y) − eik(x−y))

≡ θ(x0 − y0)(D(x− y)−D(y − x)) = θ(x0 − y0)〈[φ(x), φ(y)]〉,
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where

D(x− y) =

∫
d4k

(2π)4
i

k2 −m2
e−ik(x−y).

This is reasonable: then the ρ(y) source only affects φ(x) in the future.

Going below both poles gives the advanced propagator, which vanishes for y0 < x0.

• Feynman propagator. Define

DF (x− y) ≡ 〈Tφ(x)φ(y)〉 =
{
〈φ(x)φ(y)〉 if x0 > y0
〈φ(y)φ(x)〉 if y0 > x0

.

Here T means to time order: order operators so that earliest is on the right, to latest on

left. Object like 〈Tφ(x1) . . . φ(xn)〉 will play a central role in this class. Time ordering

convention can be understood by considering time evolution in 〈tf |ti〉. Evaluate DF (x−y)
by going to momentum space:

DF (x− y) =

∫
d4k

(2π)4
i

k2 −m2 + iǫ
e−ik(x−y),

where ǫ → 0+ enforces that we go below the −ωk pole and above the +ωk pole, i.e. we

get D(x − y) if x0 > y0, and D(y − x) if x0 < y0, as desired from the definition of time

ordering. We’ll see that this ensures causality.

• Define contraction of two fields A(x) and B(y) by T (A(x)B(y))− : A(x)B(y) :. This

is a number, not an operator. Let e.g. φ(x) = φ+(x) + φ−(x), where φ+ is the term with

annihilation operators and φ− is the one with creation operators (using Heisenberg and

Pauli’s reversed-looking notation). Then for x0 > y0 the contraction is [A+, B−], and for

y0 > x0 it is [B+, A−]. So can put between vacuum states to get that the contraction is

〈TA(x)B(y)〉. For example, in the KG theory the contraction of φ(x) and φ(y) isDF (x−y).
• Simple example of interacting theory:

L = 1
2 (∂φ

2 − µ2φ2) + (∂ψ†∂ψ −m2ψ†ψ)− gφψψ†.

Toy model for interacting nucleons and mesons. Treat last term as a perturbation.

• In QM we can use the S-picture, ih̄ d
dt
|ψ(t)〉 = H|ψ〉, or the H-picture, ih̄ d

dt
O(t) =

[O, H]. In interacting theories, it is useful to use the hybrid, interaction picture. Write

H = H0 +Hint.

we use H0 to time evolve the operators, and Hint to time evolve the states:

i
d

dt
O(t) = [O, H0], i

d

dt
|ψ(t)〉 = Hint|ψ(t)〉.
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For example, we’ll take H0 to be the free Hamilton of KG fields, with only the mass

terms included in the potential. Again, this is free because the EOM are linear, and we can

solve for φ(x) by superposition. As before, upon quantization, the fields become superpo-

sitions of creation and annihilation operators. The states are all the various multiparticle

states, coming from acting with the creation operators on the vacuum.

• Dyson’s formula. Compute scattering S-matrices. Consider asymptotic in and out

states, with the interaction turned off. Time evolve, with the interaction smoothly turned

on and off in the middle.

|ψ(t)〉 = Te
−i

∫
d4xHI |i〉.

Derive it by solving i d
dt
|ψ(t)〉 = HI(t)|ψ(t)〉 iteratively:

|ψ(t)〉 = |i〉+ (−i)
∫ t

−∞

dt1HI(t1)|ψ(t1)〉

|ψ(t1)〉 = |i〉+ (−i)
∫ t1

−∞

dt2HI(t2)|ψ(t2)〉

etc where t1 > t2, and then symmetrize in t1 and t2 etc., which is what the T time ordering

does.

Now use Wick’s theorem:

T (φ1 . . . φn) =: φ1 . . . φn : +
∑

contractions

: φ1 . . . φn :

to get rid of the time ordered products. (Prove Wick’s theorem by iteration.) Thereby

compute probability amplitude for a given process

〈f |(S − 1)|i〉 = iAfi(2π)
4δ(4)(pf − pi).

• Look at some examples, and connect with Feynman diagrams. As a first, simple

example consider the above theory, withHint =
∫
d3xgφψ†ψ. Use φ ∼ a+a† for “mesons,”

ψ ∼ b + c†, and ψ† ∼ b† + c. We’ll say that b annihilates a nucleon N and c† creates an

anti-nucleon N̄ . Conservation law, conserved charge Q = Nb −Nc.

Example: meson decay. |i〉 = a†(p)|0〉, |f〉 = b†(q1)c
†(q2)|0〉. Compute 〈f |S|i〉 =

−igδ4(p− q1 − q2) to O(g).

Now consider N +N → N +N , to O(g2). The initial and final states are

|i〉 = b†(p1)b
†(p2)|0〉, 〈f | = 〈0|b(p′1)b(p′2).
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The term that contributes to scattering at O(g2) is

T
(−ig)2

2!

∫
d4x1d

4x2φ(x1)ψ
†(x1)ψ(x1)φ(x2)ψ

†(x2)ψ(x2).

The term that contributes to S − 1 thus involves

〈p′1p′2| : ψ†(x1)ψ(x1)ψ
†(x2)ψ(x2) : |p1p2〉 = 〈p′1p′2| : ψ†(x1)ψ

†(x2)|0〉〈0|ψ(x1)ψ(x2)|p1, p2〉.

=
(
ei(p

′

1
x1+p′

2
x2) + ei(p

′

1
x2+p′

2
x1)

)(
e−i(p1x1+p2x2) + e−i(p1x2+p2x1)

)
.

The amplitude involves this times DF (x1 − x2) (from the contraction), with the prefactor

and integrals as above. The final result is

i(−ig)2
[

1

(p1 − p′1)
2 − µ2

+
1

(p1 − p′2)
2 − µ2

]
(2π)4δ(4)(p1 + p2 − p′1 − p′2).

Explicitly, in the CM frame, p1 = (
√
p2 +m2, eê) and p2 = (

√
p2 +m2,−pê), p′1 =

(
√
p2 +m2, pê′), p′2 = (

√
p2 +m2,−pê′), where ê · ê′ = cos θ, and get

A = g2
(

1

2p2(1− cos θ) + µ2
+

1

2p2(1 + cos θ) + µ2

)
.

The scattering by φ exchange leads to an attractive Yukawa potential. Indeed, the

first term in the above amplitude gives, upon using (p1 − p′1)
2 − µ2 = |~p1 + ~p′1|2 + µ2, and

the Born approximation in NRQM, ANR = −i
∫
d3~re−i(~p′−~p)U(~r), the attractive Yukawa

potential

U(r) =

∫
d3p

(2π)3
−g2ei~q·~r
|~q|2 + µ2

= − g2

4πr
e−µr.

This gives Yukawa’s explanation of the attraction between nucleons, from meson exchange.
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