10/8 Lecture outline

* Reading for today's lecture: Coleman to end of lecture 4 (p. 37).

• Last time: symmetries of \mathcal{L} and Noether's theorem. If a variation $\delta \phi_a$ changes $\delta L = \partial_\mu F^\mu$, then it's a symmetry of the action and there is a conserved current: $j^\mu = \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \delta \phi_a - F^\mu$.

Example: $x^{\mu} \to x^{\mu} + \epsilon^{\mu}$, $\delta \phi_a = \epsilon^{\nu} \partial_{\nu} \phi_a$, $\delta \mathcal{L} = \epsilon^{\nu} \partial_{\nu} \mathcal{L}$ (assuming no explicit x dependence). Get $T_{\mu\nu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi_a} \partial_{\nu} \phi_a - g_{\mu\nu} \mathcal{L}$. Stress energy tensor. Conserved charge is $P_{\mu} = \int d^3 \vec{x} T_{\mu 0}$.

Another example: $\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \omega^{\mu}_{\nu}$, leads to conserved $M_{\mu\rho\sigma} = x_{\mu}T_{\rho\sigma} - x_{\sigma}T_{\rho\mu}$. Conserved charge is $M_{\rho\sigma} = \int d^3x M_{0\rho\sigma}$. Conserved angular momentum.

Another example: $\mathcal{L} = \partial_{\mu}\psi^{\dagger}\partial^{\mu}\psi - \mu^{2}\psi^{\dagger}\psi$, has symmetry under $\psi \to e^{i\alpha}\psi$. Q = (HW).

• Example from last time: $\mathcal{L} = \frac{1}{2}(\partial_{\mu}\phi\partial^{\mu}\phi - m^{2}\phi^{2})$, gives $\Pi = \dot{\phi}$ and $\dot{\Pi} = \nabla^{2}\phi - m^{2}\phi$, the Klein-Gordon equation: $(\partial^{2} + m^{2})\phi = 0$.

• Consider the KG equation in 0 + 1 dimensions, i.e. the SHO: $L = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}\omega^2\phi^2$, $\Pi = \partial L/\partial\dot{\phi} = \dot{\phi}$. Now quantize: $[\phi, \Pi] = i\hbar$, $[a, a^{\dagger}] = 1$, $H = \omega(a^{\dagger}a + \frac{1}{2})$. So a annihilates excitations of energy $\omega \equiv m$, and a^{\dagger} creates them. In the Heisenberg picture, $\hat{\phi} = \sqrt{\frac{1}{2\omega}}(ae^{-i\omega t} + a^{\dagger}e^{i\omega t}); \Pi = \dot{\phi} = -i\sqrt{\frac{\omega}{2}}(ae^{i\omega t} - a^{\dagger}e^{-i\omega t})$. Define $|0\rangle$ s.t. $a|0\rangle = 0$, and $|n\rangle = c_n(a^{\dagger})^n |0\rangle$.

• Canonical quantization: generalize QM by replacing $q_a(t) \rightarrow \phi(t, \vec{x})$. QM is like QFT in zero spatial dimensions, with the field playing role of position before:

 $[\phi_a(\vec{x},t),\Pi_b(\vec{y},t)] = i\delta_{ab}\delta^3(\vec{x}-\vec{y}) \quad (Equal \ time \ commutators).$

$$[\phi_a(\vec{x},t),\phi_b(\vec{y},t)] = 0.$$

• Quantize the KG field theory in 3 + 1 dimensions. Write

$$\phi(x) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\vec{k}}}} [a_{\vec{k}}e^{-ikx} + a_{\vec{k}}^{\dagger}e^{ikx}],$$
$$\Pi(x) = \dot{\phi}(x) = \int \frac{d^3k}{(2\pi)^3} (-i)\sqrt{\frac{\omega_{\vec{k}}}{2}} [a_{\vec{k}}e^{-ikx} - a_{\vec{k}}^{\dagger}e^{ikx}],$$

Then canonical quantization implies that

$$[a_{\vec{k}}, a^{\dagger}_{\vec{k}'}] = (2\pi)^3 \delta^3(\vec{k} - \vec{k}'),$$

creation and annihilation operators, with others vanishing. It will be useful to define $a(k) \equiv \sqrt{2\omega_k} a_{\vec{k}}$, so then the above becomes

$$\phi(x) = \int \frac{d^3k}{(2\pi)^3 2\omega(k)} [a(k)e^{-ikx} + a^{\dagger}(k)e^{ikx}],$$
$$[a(k), a^{\dagger}(k')] = (2\pi)^3 2\omega_k \delta^3(\vec{k} - \vec{k}'),$$

with the relativistic-invariant measures appearing.

The quantum field is a superposition of creation and annihilation operators. Note also that

$$\begin{split} H &= \frac{1}{2} \int \frac{d^3k}{(2\pi)^2 (2\omega)} \omega(a(\vec{k}) a^{\dagger}(\vec{k}) + a^{\dagger}(\vec{k}) a(\vec{k})), \\ \vec{P} &= \frac{1}{2} \int \frac{d^3k}{(2\pi)^2 (2\omega)} \vec{k} (a(\vec{k}) a^{\dagger}(\vec{k}) + a^{\dagger}(\vec{k}) a(\vec{k})), \end{split}$$

Need to normal order the first term. Define : AB : for operators A and B to mean that the terms are arranged so that the annihilation operators are on the right, so annihilates the vacuum.