
12/3 Lecture outline

⋆ Reading: Luke chapter 11. Tong chapter 6

• Recap: we have discussed spin 0 and spin 1/2 quantum fields. Now move up to spin

1. (Next quarter, we’ll discuss renormalizability, and note there the complications with

quantizing fields of spin greater than 1.) Examples with spin 1 include non-fundamental

(composite) fields, e.g. spin 1 mesons, and also the fundamental force carriers: the photon,

gluons, and W± and Z0. The gluons and W± are associated with non-Abelian groups,

which we won’t discuss this quarter (we’ll see if we get to it next quarter).

• Consider a spin 1 quantum field (the ( 12 ,
1
2 ) representation of the Lorentz group),

and call it Aµ. The components of Aµ will satisfy something like a KG equation, being

massive or massless. We’ll start with the massive case first, as a warmup for the massless

case. Physically, this could be referring to the Zµ massive vector bosons of the broken

electroweak force.

For the massive vector mesons, write down the general lagrangian:

L = −1
2
(∂µA

ν∂µA
ν + a∂µA

µ∂νA
ν + bAµA

µ).

The sign is chosen so that the kinetic terms of the spatial components have the right

sign. Write the EOM:

−∂2Aν − a∂ν(∂ ·A) + bAν = 0,

and note plane wave solutions Aµ(x) = ǫνe
−ik·x solves it if k2ǫν +akν(k · ǫ)+ bǫν = 0. The

longitudinal solutions have ǫ ∝ k and have mass µ2
L = −b/(1 + a). The transverse have

mass µ2
T = −b. Can eliminate the uninteresting longitudinal solution by taking a = −1

and b 6= 0, then write Proca lagrangian

L = −
1

4
FµνF

µν + 1
2µ

2AµA
µ,

where Fµν = ∂µAν − ∂νAµ. Each component Aµ satisfies the KG equation with mass µ.

Can choose ǫ(±) = 1√
2
(0, 1,∓i, 0) and ǫ(0) = (0, 0, 0, 1), where the label is the value of Jz

of the spin 1 vector. Normalize by ǫ(r)∗ · ǫ(s) = −δrs and
∑

r ǫ
(r)∗
µ ǫ

(r)
ν = −gµν +

kµkν

µ2 .

The conjugate momenta to Aµ are π0 = ∂L/∂Ȧ0 = 0, and πi = ∂L/∂Ȧi = −F 0i = Ei.

Then H = −1
2(F0iF

0i − 1
2FijF

ij + µ2AiA
i − 1

2µ
2A0A

0) ≥ 0.

• Quantize the massive vector:

[Ai(t, ~x), F
j0(t, ~y)] = iδji δ

(3)(~x− ~y).
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In terms of the plane wave solutions,

Aµ(x) =

3
∑

r=1

∫

d3k

(2π)3/2(
√

2ωk)

[

arkǫ
r
µe

−ikx + a†rk ǫ
∗r
µ e

ikx
]

,

and then

[ark, a
†s
k′ ] = δrsδ3(~k − ~k′).

and

: H :=
∑

r

∫

d3kωka
†r
k a

r
k.

The propagator, the contraction of Aµ(x) and Aν(y), is

〈TAµ(x)Aν(y)〉 =

∫

d4k

(2π)4
e−ik(x−y)

[

−i(gµν − kµkν/µ
2)

k2 − µ2 + iǫ

]

.

So the Feynman rule is that massive vectors have the momentum space propagator

[

−i(gµν − kµkν/µ
2)

k2 − µ2 + iǫ

]

.

And 〈0|Aµ(x)|V (k, r)〉 = ǫµ(k)
re−ikx, so incoming vector mesons have ǫrµ(k) and outgoing

have ǫ∗r(k).

We can couple the massive vector to other fields, e.g. to a fermion via Lint = −gψ̄ /AΓψ,

with Γ = 1 (vector) or Γ = γ5 (axial vector). Gives Feynman rule that a vertex has a

factor of −igγµΓ.
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