12/3 Lecture outline

* Reading: Luke chapter 11. Tong chapter 6

• Recap: we have discussed spin 0 and spin 1/2 quantum fields. Now move up to spin 1. (Next quarter, we'll discuss renormalizability, and note there the complications with quantizing fields of spin greater than 1.) Examples with spin 1 include non-fundamental (composite) fields, e.g. spin 1 mesons, and also the fundamental force carriers: the photon, gluons, and W^{\pm} and Z^{0} . The gluons and W^{\pm} are associated with non-Abelian groups, which we won't discuss this quarter (we'll see if we get to it next quarter).

• Consider a spin 1 quantum field (the $(\frac{1}{2}, \frac{1}{2})$ representation of the Lorentz group), and call it A_{μ} . The components of A_{μ} will satisfy something like a KG equation, being massive or massless. We'll start with the massive case first, as a warmup for the massless case. Physically, this could be referring to the Z^{μ} massive vector bosons of the broken electroweak force.

For the massive vector mesons, write down the general lagrangian:

$$\mathcal{L} = -\frac{1}{2} (\partial_{\mu} A^{\nu} \partial_{\mu} A^{\nu} + a \partial_{\mu} A^{\mu} \partial_{\nu} A^{\nu} + b A_{\mu} A^{\mu}).$$

The sign is chosen so that the kinetic terms of the spatial components have the right sign. Write the EOM:

$$-\partial^2 A_{\nu} - a\partial_{\nu}(\partial \cdot A) + bA_{\nu} = 0,$$

and note plane wave solutions $A_{\mu}(x) = \epsilon_{\nu} e^{-ik \cdot x}$ solves it if $k^2 \epsilon_{\nu} + ak_{\nu}(k \cdot \epsilon) + b\epsilon_{\nu} = 0$. The longitudinal solutions have $\epsilon \propto k$ and have mass $\mu_L^2 = -b/(1+a)$. The transverse have mass $\mu_T^2 = -b$. Can eliminate the uninteresting longitudinal solution by taking a = -1and $b \neq 0$, then write Proca lagrangian

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\mu^2 A_{\mu}A^{\mu},$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. Each component A_{μ} satisfies the KG equation with mass μ . Can choose $\epsilon^{(\pm)} = \frac{1}{\sqrt{2}}(0, 1, \pm i, 0)$ and $\epsilon^{(0)} = (0, 0, 0, 1)$, where the label is the value of J_z of the spin 1 vector. Normalize by $\epsilon^{(r)*} \cdot \epsilon^{(s)} = -\delta^{rs}$ and $\sum_r \epsilon^{(r)*}_{\mu} \epsilon^{(r)}_{\nu} = -g_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{\mu^2}$.

The conjugate momenta to A_{μ} are $\pi^0 = \partial \mathcal{L} / \partial \dot{A}_0 = 0$, and $\pi^i = \partial \mathcal{L} / \partial \dot{A}_i = -F^{0i} = E^i$. Then $\mathcal{H} = -\frac{1}{2}(F_{0i}F^{0i} - \frac{1}{2}F_{ij}F^{ij} + \mu^2 A_i A^i - \frac{1}{2}\mu^2 A_0 A^0) \ge 0$.

• Quantize the massive vector:

$$[A_i(t, \vec{x}), F^{j0}(t, \vec{y})] = i\delta_i^j \delta^{(3)}(\vec{x} - \vec{y}).$$

In terms of the plane wave solutions,

$$A_{\mu}(x) = \sum_{r=1}^{3} \int \frac{d^{3}k}{(2\pi)^{3/2}(\sqrt{2\omega_{k}})} \left[a_{k}^{r} \epsilon_{\mu}^{r} e^{-ikx} + a_{k}^{\dagger r} \epsilon_{\mu}^{*r} e^{ikx} \right],$$

and then

$$[a_k^r, a_{k'}^{\dagger s}] = \delta^{rs} \delta^3(\vec{k} - \vec{k'}).$$

and

$$: \mathcal{H} := \sum_{r} \int d^{3}k \omega_{k} a_{k}^{\dagger r} a_{k}^{r}.$$

The propagator, the contraction of $A_{\mu}(x)$ and $A_{\nu}(y)$, is

$$\langle TA_{\mu}(x)A_{\nu}(y)\rangle = \int \frac{d^4k}{(2\pi)^4} e^{-ik(x-y)} \left[\frac{-i(g_{\mu\nu} - k_{\mu}k_{\nu}/\mu^2)}{k^2 - \mu^2 + i\epsilon}\right].$$

So the Feynman rule is that massive vectors have the momentum space propagator

$$\left[\frac{-i(g_{\mu\nu}-k_{\mu}k_{\nu}/\mu^2)}{k^2-\mu^2+i\epsilon}\right].$$

And $\langle 0|A_{\mu}(x)|V(k,r)\rangle = \epsilon_{\mu}(k)^{r}e^{-ikx}$, so incoming vector mesons have $\epsilon_{\mu}^{r}(k)$ and outgoing have $\epsilon^{*r}(k)$.

We can couple the massive vector to other fields, e.g. to a fermion via $\mathcal{L}_{int} = -g\bar{\psi}A\Gamma\psi$, with $\Gamma = 1$ (vector) or $\Gamma = \gamma_5$ (axial vector). Gives Feynman rule that a vertex has a factor of $-ig\gamma^{\mu}\Gamma$.