11/26 Lecture outline
* Reading: Luke chapter 10. Tong chapter 5

e Recall, the Dirac equation (iy*d, —m)1 = 0, and we considered plane wave solutions
w — us<p)e—ipx, w — ,Ur<p)eipx,
and found that these satisfy the Dirac equation provided that p? = m? (good!) and

(P —m)u®(p) =0,  (yup" +m)v"(p) = 0.
The important properties are that these form a complete, orthogonal basis, with
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" (p)u®(p) = —0"(p)v®(p) = 2mad"*, u"v® =0v"u® =0.
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e The general solution of the classical EOM is a superposition of these plane waves:

2
d3p ~ )
— - = bT T —1ipx + rt r ipx
0@ =3 [ sz OO @ o ()
The theory is quantized by using 11 = 9L£/9(0py) = iyt and imposing

{0, 2. 0,9} =id(F —g), ie {2 'Y} =T 7).

If we quantize with a commutator rather than anticommutator, get a Hamiltonian that
is unbounded below, with ¢ creating antiparticles with negative energy. Shows that spin
% must have fermionic statistics, to avoid unitarity problems. This is a special case of
the general spin-statistics theorem: unitarity requires integer spin fields to be quantized
as bosons (commutators) and half-integer spin to be quantized according to Fermi-Dirac
statistics (anti-commutators). Leads to the Pauli exclusion principle.

So the coefficients in the plane wave expansion get quantized to be annihilation and

creation operators as
{"(p), 01 (p")} = 67 2m)* 8 (F—15),  {(p), T (@)} = 67 (20)°° (7 — 7).

with all other anticommutators vanishing.



e Hamiltonian of the Dirac equation, with fermionic statistics, H = szl} — L =
Y(—i0;77 +m)y, and then H = [ d3xH gives

H / %Epwp)br(p) + et () (),

good, b"T(p) creates a spin 1/2 particle of positive energy, and CTT(p) creates a spin 1/2
particle of positive energy. The second term was re-ordered according to normal ordering —
the terms originally work out to have the opposite order and the opposite sign. Fermionic
statistics gives the sign above, upon normal ordering, but Bose statistics would have given
the ¢"f¢” term with a minus sign, leading to H that is unbounded below. This shows that
we need the Fermionic statistics for spin 1/2 fields to get a healthy theory.
e Do perturbation theory as before, but account for Fermi statistics, e.g. T'(¢(x1)¥(x2)) =

—T(¢(x2)1p(x1)) and likewise for normal ordered products. Anytime Fermionic variables
are exchanged, pick up a minus sign (and sometimes the additional term if the anti-

commutator is non-zero). Consider in particular the propagator

{¥(2), ¥(y)} = (ids + m)(D(z —y) — D(y — )).

and the contraction
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(O[T (4 (@) (y))]0) = / dlp _i(+m)

e~ p(z—y)
(2m)4 p%2 — m? + i€

Vanishes for spacelike separated points. The momentum space fermion propagator is
1
p—m+ie
Let’s call the particle states nucleons and anti-nucleons (we could also call them elec-

trons and positrons etc):

IN(p, 7)) =b(p)"10)  |N(p,7)) = ¢"T(p)|0).
Then
Ol(z)|N(p,r)) = e~ P*u"(p),  (N(p,r)[P(x)|0) = eP*u" (p).

Incoming fermions get a factor of u” (p), outgoing fermions get u" (p); incoming antifermions
gets v"(p), and outgoing antifermions get v" (p).

Write the amplitude by following the arrows backwards, from the head to the tail.

e Next time: compute amplitudes in new and improved toy model of mesons and

nucleons.



