
11/21 Lecture outline

⋆ Reading: Luke chapter 10. Tong chapter 5

• Recall, the Dirac action for ψ =

(
uR
uL

)
.

S =

∫
d4xψ̄(x)(iγµ∂µ −m)ψ(x)

=

∫
d4x(u†Riσ

µ∂µuR + u†Liσ̄
µ∂µuL −m(u†RuL + u†Lu

R)),

where we used γµ from the last lecture and also σµ = (1, σi) and σ̄µ = (1,−σi). The last

line exhibits something interesting: if there is a mass term, it is necessary to have both uR

and uL (preserving parity, which takes ~x → −~x and exchanges uR ↔ uL). If m = 0, we

can consider P non-invariant theories with only uR or only uL. More about this perhaps

in a later quarter. Also, the action has a global U(1) symmetry under ψ → eiαψ, whose

Noether conserved charge is fermion number. If m = 0, this symmetry is enhanced to

U(1)R × U(1)L, acting separately on uR and uL. Neat point: this enhanced symmetry

helps explains why the known fermion masses are small. Call U(1)V ∼= U(1)R+U(1)L and

U(1)A ∼= U(1)R − U(1)L. Also, call uR ≡ u+ and uL ≡ u−.

Starting from the above Lagrangian, we get the EL equations from minimizing the

action. Vary L w.r.t. ψ̄ to get the Dirac equation:

(iγµ∂µ −m)ψ = 0.

Dirac wrote this down by thinking about how to make sense of the square-root of the

operator appearing in the KG equation,
√
∂µ∂µ +m2; indeed, −(iγµ∂µ+m)(iγµ∂µ−m) =

∂2 +m2.

The conjugate momentum to ψ is

πµψ =
∂L

∂(∂µψ)
= iψ̄γµ.

So ψ has 4 (rather than 8) real d.o.f., it is the phase-space that has 8 d.o.f.

Let’s first consider the plane wave solutions for a single Wey spinor u+, in the m = 0

case, so the EOM is ∂µσ
µu+(x) = 0. Take positive energy, k0 = +

√
~k2, and then the

plane wave solutions are

u+(x) = u+e
−ikx, or u+(x) = v+e

ikx.
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When we quantize, u+ will go with a particle annihilation operator, and v+ will go with

an antiparticle creation operator. Plugging into the EOM, (k0 − ~σ · ~k)u+ = 0. Taking

~k = k0ẑ, get

〈0|u+(x)|k〉 ∝ e−ikx
(
1
0

)
.

Note also that the state |k〉 has spin Jz = 1/2, under a rotation by θ around the ẑ axis,

it picks up a phase eiθ/2. The state |k〉 thus carries helicity +1/2, and the annihilation

operator that goes with u+ annihilates that state. Likewise

〈k|v+(x)|0〉 ∝ eikx
(
1
0

)
,

so v+ goes with a creation operator creating states of angular momentum −1/2 along

the direction of motion, i.e. helicity −1
2 . The theory has particles of helicity 1/2 and

antiparticles of helicity −1/2. This can only happen for massless fermions, since otherwise

could get the opposite helicity in a boosted frame. Neutrinos are like this. All neutrinos are

“left-handed”. Nice story from Feynman Lectures on Physics about shaking hands with

an alien. (At the time the story was written, it was known that C and P are separately

broken, but thought that CP was a valid symmetry. CP would be a valid symmetry if there

were only two matter generations in the Standard Model. Now we know that there are

actually three generations, and that CP is also violated, by tiny effects. Lorentz symmetry

implies that CPT is a valid symmetry, so CP violation is equivalent to breaking of time

reversal symmetry at the microscopic level.)

The plane wave solutions of the Dirac equation are

ψ = us(p)e−ipx, ψ = vr(p)eipx,

where

(γµpµ −m)us(p) = 0, (γµp
µ +m)vr(p) = 0.

If we wanted to solve the eigenvalue equation γµp
µX = λX , we’d find four eigenvalues,

and four linearly independent eigenvectors, which form a basis. Here, because /p2 = m2,

we see that λ = ±m, so there are two eigenvectors with λ = m, i.e. us, and two with

λ = −m, i.e. vr. Here r, s both run over 1, 2, labeling the four eigenvectors, each of which

is a 4-component vector.

The important properties are that these form a complete, orthogonal basis, with

ūr(p)us(p) = −v̄r(p)vs(p) = 2mδrs, ūrvs = v̄rus = 0.
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2∑

r=1

ur(p)ūr(p) = γµpµ +m,
2∑

r=1

vr(p)v̄r(p) = γµpµ −m.

We’ll see how to evaluate Feynman diagrams involving fermions using just these relations.

These relations are basis - independent. Explicit expressions for ur and vs are less useful

and are also basis dependent.

For example, in the Dirac basis:

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
,

in the rest frame of a massive fermion, we get

u(1) =




√
2m
0
0
0


 , u(2) =




0√
2m
0
0




which can be boosted to get the solution for general pµ. For the massless case,

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, vr(p) =

( √
p · σηr

−√
p · σ̄ηr

)
,

where ξ†ξ = η†η = 1, and r, s label the basis choices, e.g ξ1 =

(
1
0

)
and ξ2 =

(
0
1

)
.
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