* Reading: Luke chapter 9. Tong chapter 4

• On to fermions! Consider more generally Lorentz transformations. Under lorentz transformations $x^{\mu} \to x^{\mu'} = \Lambda^{\mu}_{\nu} x^{\nu}$, scalar fields transform as $\phi(x) \to \phi'(x) = \phi(\Lambda^{-1}x)$. Vector fields transform as $A^{\mu} \to \Lambda^{\mu}_{\nu} A^{\nu}(\Lambda^{-1}x)$. Generally, $\phi^a \to D[\Lambda]^a_b \phi^b(\Lambda^{-1}x)$, where $D[\Lambda]$ is a rep of the Lorentz group, $D[\Lambda_1]D[\Lambda_2] = D[\Lambda_1\Lambda_2]$.

Write $D[\Lambda] = \exp(i\frac{1}{2}\Omega_{\mu\nu}\mathcal{M}^{\mu\nu})$, which is a rep if $\mathcal{M}^{\nu\nu}$ satisfies the Lie algebra commutation relation $[\mathcal{M}^{\rho\sigma}, \mathcal{M}^{\mu\nu}] = i\eta^{\sigma\mu}\mathcal{M}^{\rho\nu} \pm 3perms$, where the perms account for $\mathcal{M}^{\mu\nu} = -\mathcal{M}^{\nu\mu}$. E.g. the fundamental rep has $i(\mathcal{M}^{\mu\nu})^{\rho\sigma} = \eta^{\mu\rho}\eta^{\nu\sigma} - \eta^{\mu\sigma}\eta^{\nu\rho}$.

Write the Lorentz transformation generators in terms rotation, whose generators are the angular momentum \vec{J} , where $J_i = \frac{1}{2}\epsilon_{ijk}M^{jk}$, and boosts, with \vec{K} and $K_i = M^{i,0}$. They are similar, e.g. boosting along the x axis vs rotation around the x axis:

$$\Lambda_{boost} = \begin{pmatrix} \cosh \phi & \sinh \phi & & \\ \sinh \phi & \cosh \phi & & \\ & & 1 & \\ & & & 1 \end{pmatrix} \qquad \Lambda_{rotate} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \cos \theta & -\sin \theta \\ & & \sin \theta & \cos \theta \end{pmatrix}.$$

So define $\vec{N}^{\pm} \equiv \frac{1}{2}(\vec{J} \pm i\vec{K})$. Then the Lorentz algebra becomes simply $[N_i^{\pm}, N_k^{\pm}] = i\epsilon_{ijk}N_k^{\pm}$, and $[N^{\pm}, N_j^{\mp}] = 0$, i.e. two copies of the familiar rotation commutation relations. The reps are then labeled by (n_L, n_R) , where n_L and n_R are non-negative half-integers, like the angular momentum j. Note that parity exchanges $\vec{N} \leftrightarrow \vec{N}^{\dagger}$, so it exchanges the above left and right, hence their names. The angular momentum $\vec{J} = \vec{N} + \vec{N}^{\dagger}$, so j runs from $|n_L - n_R|$ to $n_L + n_R$ The scalar rep is (0,0), the vector rep is $(1/2,1/2)^{-1}$ The basic spinor reps are (1/2,0) and (0,1/2), denoted u_{\pm} ; these are called left and right handed Weyl spinors. They both have $D = e^{-i\vec{\sigma}\cdot\hat{e}\theta/2}$ for a rotation by θ around the \hat{e} axis, but they have $D_{\pm} = e^{\pm\vec{\sigma}\cdot\hat{e}\phi/2}$ for a boost along the \hat{e} axis, where $v = \tanh \phi$. These 2-component Weyl spinor representations individually play an important role in non-parity invariant theories, like the weak interactions. Parity $((t, \vec{x}) \to (t, -\vec{x}))$ exchances them. So, in

Consider $\sigma^{\mu}=(1,\sigma^{i})$, where each entry is a 2×2 matrix. Now form $X=x^{\mu}\sigma^{m}u$. Lorentz transformations act as $X\to X'=DXD^{\dagger}$, where $D\in SL(2,C)$. Here $D=e^{-i\vec{\sigma}\cdot\hat{e}\theta/2}$ for a rotation by θ around the \hat{e} axis, and $D_{\pm}=e^{\pm\vec{\sigma}\cdot\hat{e}\phi/2}$ for a boost along the \hat{e} axis, where $v=\tanh\phi$. This illustrates the statement that the vector representation of the Lorentz group is $D^{(1/2,1/2)}$.

parity invariant theories, like QED, they are combined into a 4-component Dirac spinor, (1/2,0) + (0,1/2):

$$\psi = \begin{pmatrix} u_+ \\ u_- \end{pmatrix}.$$

The 4-component spinor rep starts with the clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu} \mathbf{1}$, e.g.

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}.$$

There are other choices of reps of the clifford algebra.

 $S^{\mu\nu} = \frac{1}{4}[\gamma^{\mu}, \gamma^{\nu}] = \frac{1}{2}\gamma^{\mu}\gamma^{\nu} - \frac{1}{2}\eta^{\mu\nu}$, satisfies the Lorentz Lie algebra relation. Under a rotation, $S^{ij} = -\frac{i}{2}\epsilon_{ijk}\begin{pmatrix} \sigma^k & 0\\ 0 & \sigma^k \end{pmatrix}$, so taking $\Omega_{ij} = -\epsilon_{ijk}\varphi^k$ get under rotations

$$S[\vec{\varphi}] = \left(\begin{array}{cc} e^{i\vec{\varphi}\cdot\vec{\sigma}/2} & 0 \\ 0 & e^{i\vec{\varphi}\cdot\vec{\sigma}/2} \end{array} \right).$$

Under boosts, $\Omega_{i,0} = \phi_i$,

$$S[\Lambda] = \begin{pmatrix} e^{\vec{\phi} \cdot \vec{\sigma}/2} & 0\\ 0 & e^{-\vec{\phi} \cdot \vec{\sigma}/2} \end{pmatrix}.$$

This exhibits the 2-component reps that we described above.

Under Lorentz transformations, spinors transform as $\psi(x) \to S[\Lambda]\psi(\Lambda^{-1}x)$, and $\psi^{\dagger}(x) \to \psi^{\dagger}(\Lambda^{-1}x)S[\Lambda]^{\dagger}$. Note that $S[\Lambda]^{\dagger}S[\Lambda] \neq 1$, but $S[\Lambda]^{\dagger} = \gamma^{0}S[\Lambda]^{-1}\gamma_{0}$. So define $\bar{\psi}(x) \equiv \psi^{\dagger}\gamma^{0}$ and note that $\bar{\psi}\psi$ transforms as a scalar, and $\bar{\psi}\gamma^{\mu}\psi$ transforms as a Lorentz 4-vector.

For 2-component spinors, $u_{-}^{\dagger}\sigma^{\mu}u_{-}$ and $u_{+}^{\dagger}\bar{\sigma}^{\mu}u_{+}$ transform like vectors, where $\sigma^{\mu}=(1,\sigma^{i})$ and $\bar{\sigma}^{\mu}=(1,-\sigma^{i})$. Here are two Lorentz scalars (exchanged under parity): $u_{\pm}^{\dagger}u_{\mp}$. $\gamma^{5}\equiv -i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}$, anticommutes with all other γ^{μ} and $(\gamma^{5})^{2}=1$. In our above representation of the gamma matrices, $\gamma_{5}=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$, so $P_{\pm}=\frac{1}{2}(1\pm\gamma^{5})$ are projection operators, projecting on to u_{\pm} .

• The Dirac action:

$$S = \int d^4x \bar{\psi}(x) (i\gamma^{\mu}\partial_{\mu} - m)\psi(x)$$
$$= \int d^4x (u_+^{\dagger} i\sigma^{\mu}\partial_{\mu} u_+ + u_-^{\dagger} i\bar{\sigma}^{\mu}\partial_{\mu} u_- - m(u_+^{\dagger} u_- + u_-^{\dagger} u^+)).$$