10/14 Lecture outline
e The principle of least action. Particle goes from (¢;,x;) to (t¢,zs) along some path
x(t). How to determine z(¢)? Two options:
(i) Locally, using F = ma.
(ii) The principle of least action. Among all possible paths, the correct one is that

which locally minimizes (stationarizes)

Sla(t)] = /t CAtL(z(t), #(t)), L=T-U.

[

This is an example of a functional. A function like z(¢) has input a number, ¢, and output
a number, z(t). For a functional, the input is a function like z(¢), and the output is a
number, S[x(t)]. The number depends on the whole path.

e Example: take T' = $mi? and U(z) = mgz, and (t;,z;) = (0,0) and (t7,zs). We
know from F' = ma that

z(t) = —5gt* + vot + w0,

where xg = 0 and vg is determined by zy = —%gt? + voty. Plot it; it’s a parabola. Think

about how it minimizes S[x(t)].
e Other minimized functional examples.
E.g. surface of a soap bubble, minimizes (more precisely stationarizes) the total area.
Fermat’s principle: among all possible paths, light takes the one of least (more pre-

cisely, stationary) time:

T [ar= [ =2 o, ds=aT T dg?

Brachistochrone: what path from 1 — 2 such that a sliding object will get there in
shortest time?
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(Answer: a cycloid: x = a(f —sinf), y = a(1 — cos0).

e Here’s how to do these kinds of problems. Consider generally
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Now vary y(z) — y(x) + dy(x) and we get

OF = Flf(a) + 8] - Flf@) = [ do (Ghoy+ oo 2 oyta))
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where we integrated by parts and dropped the boundary term (because we take dy to

preserve the endpoint boundary conditions. Write this as

The condition that the functional is stationary is that % =0

This is the Euler-Lagrange equation.

e Check brachistochrone 0 = M(zy T[x(y), = (y)]:
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Implies 2’ = y/y/(2a — y), yields cycloid above.

e For our problem of interest, S = f dtL with L = T'—V , the Euler-Lagrange equation
is
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