
10/14 Lecture outline

• The principle of least action. Particle goes from (ti, xi) to (tf , xf ) along some path

x(t). How to determine x(t)? Two options:

(i) Locally, using ~F = m~a.

(ii) The principle of least action. Among all possible paths, the correct one is that

which locally minimizes (stationarizes)

S[x(t)] =

∫ tf

ti

dtL(x(t), ẋ(t)), L = T − U.

This is an example of a functional. A function like x(t) has input a number, t, and output

a number, x(t). For a functional, the input is a function like x(t), and the output is a

number, S[x(t)]. The number depends on the whole path.

• Example: take T = 1
2
mẋ2 and U(x) = mgx, and (ti, xi) = (0, 0) and (tf , xf ). We

know from F = ma that

x(t) = −1
2gt

2 + v0t+ x0,

where x0 = 0 and v0 is determined by xf = −1
2gt

2
f + v0tf . Plot it; it’s a parabola. Think

about how it minimizes S[x(t)].

• Other minimized functional examples.

E.g. surface of a soap bubble, minimizes (more precisely stationarizes) the total area.

Fermat’s principle: among all possible paths, light takes the one of least (more pre-

cisely, stationary) time:

T =

∫

dt =

∫

ds

v
=

1

c

∫

n(x, y)ds, ds =
√

dx2 + dy2,

Brachistochrone: what path from 1 → 2 such that a sliding object will get there in

shortest time?

T =

∫

ds

v
=

∫

ds
√
2gy

=
1

√
2g

∫ yf

0

√

x′(y)2 + 1

y
dy.

(Answer: a cycloid: x = a(θ − sin θ), y = a(1− cos θ).

• Here’s how to do these kinds of problems. Consider generally

F [y(x)] =

∫ x2

x1

dxL[y(x), y′(x)].
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Now vary y(x) → y(x) + δy(x) and we get

δF = F [f(x) + δf(x)]− F [f(x)] =

∫ x2

x1

dx

(

∂L

∂y
δy +

∂L

∂y′
d

dx
δy(x)

)

=

∫ x2

x1

dx

(

∂L

∂y
−

d

dx

∂L

∂y′

)

δy(x),

where we integrated by parts and dropped the boundary term (because we take δy to

preserve the endpoint boundary conditions. Write this as

δF

δy(x)
=

∂L

∂y
−

d

dx

∂L

∂y′
.

The condition that the functional is stationary is that δF
δy(x)

= 0:

∂L

∂y
−

d

dx

∂L

∂y′
= 0.

This is the Euler-Lagrange equation.

• Check brachistochrone 0 = δ
δx(y)T [x(y), x

′(y)]:

∂f

∂x
=

d

dy

∂f

∂x′
, f =

√

x′2 + 1/
√
y,

Implies x′ =
√

y/(2a− y), yields cycloid above.

• For our problem of interest, S =
∫

dtL with L = T−V , the Euler-Lagrange equation

is
δS

δx(t)
=

∂L

∂x(t)
−

d

dt

∂L

∂ẋ(t)
= 0.
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