10/7 Lecture outline

\star Reading for today's lecture: Taylor chapter 5. Also consult Arovas notes.

Damped harmonic oscillator

$$
\left(\frac{d^2}{dt^2} + 2\beta \frac{d}{dt} + \omega_0^2\right)x = 0,
$$

(with $\gamma = 2\beta m$).

Note that this is a linear equation, so superposition of solutions. Take $x(t) = Rez(t)$ with $z(t) = \sum_i C_i e^{-i\omega_i t}$ and get $\omega^2 + 2i\beta\omega - \omega_0^2$, so solution has $\omega = \omega_{\pm} = -i\beta \pm (\omega_0^2 - \omega_0^2)$ β^2 ^{1/2}. Then $x(t) = Re(C_+e^{-i\omega_+t} + C_-e^{-i\omega_-t}).$

Underdamped case: $\beta^2 < \omega_0^2$ has $x(t) = e^{-\beta t} (C \cos(\nu t) + D \sin(\nu t))$, where $\nu =$ $\sqrt{\omega_0^2 - \beta^2}$. Oscillates before damping.

Overdamped case: $\beta^2 > \omega_0^2$) has $x(t) = e^{-\beta t} (C \cosh(\tilde{n}ut) + D \sinh(\tilde{\nu}t))$, where $\tilde{\nu} = \sqrt{\beta^2 - \omega_0^2}$ $\beta^2-\omega_0^2.$

Critically damped case: $\omega_0^2 = \beta^2$ has $x(t) = Ce^{-\beta t} + Dte^{-\beta t}$. Oscillations damp out fastest in this case.