
11/30 Lecture outline

• New topic: Hamilton’s formulation of mechanics. Newton’s in 1687, Lagrange’s in

1788, Hamilton’s in 1834.

• Generalized coordinates qi. In the Lagrangian description we study L(qi, q̇i, t).
Note that it depends on coordinates and their time derivatives, the velocities. The E.L.

equations yield Newton’s laws, which are second order differential equations for the qi.

Hamilton’s innovation is to replace them with (coupled) first order differential equations for

the coordinates (qi, pi). In the Lagrangian description, pi = ∂L/∂q̇i is not an independent,

basic variable. Conversely, in the Hamiltonian description q̇ is not an independent, basic

variable.

• The Hamiltonian is

H(qi, pi, t) =
∑

i

piq̇i − L.

Note that the Hamiltonian is written as a function of pi (and qi), rather than q̇i. How?

This is an example of a Legendre transform. Show how this works for the simple case of

a single coordinate q: H = pq̇ −L(q, q̇, t). Now compute

dH = dpq̇ + pdq̇ − ∂L
∂q

dq − ∂L
∂q̇

dq̇ − ∂L
∂t

dt

= dpq̇ − ∂L
∂q

dq − ∂L
∂t

dt,

where on the 2nd line we used p = ∂L/∂q̇. It follows from the d(·) terms on the RHS that

H is naturally written as a function of (q, p, t). Moreover:

∂H
∂p

∣

∣

q,t
= q̇,

∂H
∂q

∣

∣

p,t
= −ṗ,

∂H
∂t

∣

∣

p,q
= −∂L

∂t
,

where we used the above expression for dH, and the E.L. equation in the 2nd equality.

The first two equalities are called Hamilton’s equations. Note also that the total time

derivative is
dH
dt

=
∂H
∂p

ṗ+
∂H
∂q

q̇ +
∂H
∂t

=
∂H
∂t

= −∂L
∂t

,

where the second equality used Hamilton’s equations. So the Hamiltonian is conserved –

a constant of the motion – if the it does not depend explicitly on time. That is the case if

the Lagrangian does not depend explicitly on time (as we have already before discussed).

The (qi, pi) variables are called phase space.
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• Hamilton’s equations:

∂H
∂p

∣

∣

q,t
= q̇,

∂H
∂q

∣

∣

p,t
= −ṗ,

are two first order equations, of the general form q̇ = f(p, q) and ṗ = g(p, q). (We omit

t here, supposing that there is no explicit t dependence). Such DEQs are well-studied by

mathematicians. Picture them as giving the dynamics of flow on the (q, p) phase space.

Each point (p, q) has a unique orbit of these equations through phase space.

• Harmonic oscillator example:

H =
p2

2m
+ 1

2
kx2.

Energy conservation givesH = E = 1

2
kA2, where A is the maximum amplitude. The phase

space orbit (q, p) associated with a given energy E is thus an ellipse, with semi-major axes

A in the q direction and
√
kmA in the p direction. The Hamilton equations are

ẋ = p/m, ṗ = −kx,

which gives how a point on the ellipse cycles around the ellipse in time, completing a full

circuit in the period τ = 2π/ω, where ω =
√

k/m. Indeed, the Hamilton equations can be

written in matrix form as

d

dt

(

x
p

)

=

(

0 1/m
−k 0

)(

x
p

)

which is reminiscent of the equations from the previous two lectures, but now they are two

first order equations for one degree of freedom, rather than n second order equations for n

degrees of freedom. The solutions are anyway found similarly, and we obtain oscillations

with frequency ω =
√

k/m.

• With n degrees of freedom, Hamilton’s equations become:

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

.

These are 2n first order equations on the 2n dimensional phase space (qi, pi). E.g. for a

point particle moving in 3 space dimensions, these are equations for orbits in a 6d phase

space.
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• Liouville’s theorem: the 2n dimensional velocity vector on phase space, (q̇i, ṗi). has

vanishing divergence. Consider e.g. the case for n = 1 degree of freedom, with v = (q̇, ṗ):

∇ · v =
∂q̇

∂q
+

∂ṗ

∂p
= 0,

where the last equality uses the Hamilton equations. It follows from this that the phase

space motion preserves volumes in phase space. This is important for the foundation of

statistical mechanics.

• Poisson brackets. For any functions f(qi, pi, t) and g(qi, pi, t), define

{f, g} ≡
n
∑

i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

For example:

{qi, qj} = 0, {qi, pj} = δij , {pi, pj} = 0.

It follows from the definition that

{f, g} = −{g, f}, {f, c} = 0, {f1 + f2, g} = {f1, g}+ {f2, g}

{f1f2, g} = f1{f2, g}+ f2{f1, g}.

Then Hamilton’s equations can be written as

q̇i = {H, qi}, ṗi = {H, pi}

and more generally it follows from Hamilton’s equation that, for any function f(qi, pi, t)

of phase space and time,
df

dt
=

∂f

∂t
+ {H, f}.

If f is a conserved quantity, the RHS vanishes. Assuming that it doesn’t depend

explicitly on t, the conserved quantities thus satisfy {H, f} = 0.
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