
11/21 Lecture outline

• Continue with coupled oscillators. Recall

M
d2

dt2
x = −Kx.

As usual, we can solve the equations by taking x = Rez, with z = ae−iωt. Plugging in, we

find that

(K− ω2M)a = 0,

and since we want to have a 6= 0, the determinant of the matrix multiplying it must vanish.

For n oscillators this gives n solutions ωi and ai=1...n. We were considering the example
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Taking k1 = k3 and k2 = kint and m1 = m2, get ω1 = ω
−

=
√
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m
and ω2 = ω+ =
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m
, with
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Example: m1 = m2 = m and k1 = k2 = k3 = k. Then ω1 =
√

k
m

and ω2 =
√

3k
m
.

If we define normal coordinates by If we define normal coordinates by ξ1 = 1
2 (x1+x2)

and ξ2 = 1
2
(x1 − x2), then the two normal modes are

(

ξ1(t)
ξ2(t)

)
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0
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, and
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0
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,

and the general solution is a general superposition of them.

• For weakly coupled oscillators, kint ≪ k1, and then ω2 ≈ ω1 + ǫ, where ǫ ≡ kint

k1

.

Find interesting solutions like

(

x1(t)
x2(t)

)

=

(

A cos ǫt cosω0t
A sin ǫt sinω0t

)

.

• General case, where there are n coupled degrees of freedom, with coordinates qi, for

i = 1 . . . n. Suppose that there is a stable equilibrium when all qi = 0. For small displace-

ments from equilibrium, we get in effect n coupled harmonic oscillators, with equations

like above

M
d2

dt2
x = −Kx, (1)

x = Reae−iωt, (2)
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(K− ω2
M)a = 0. (3)

det(K− ω2
M) = 0. (4)

To see this expand the general kinetic and potential energies to quadratic order in the

small displacements qi:

T = 1
2
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Aij(q)q̇iq̇j ≈ 1
2
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Mijqiqj ,

where Mij = Aij(qi = 0) and

U(q) ≈ 1
2

∑

ij

Kijqiqj ,

where Kij = ∂2U
∂qi∂qj

|qi=0 are the coefficients in our Taylor’s expansion of U to quadratic

order in small fluctuations qi. The equation of motion can be written in matrix notation

exactly as in (1). The solution again is of the form (2). Again we find the normal modes

from (3) and (4), which now has n normal-mode solutions. The general solution is again

a superposition of the n normal modes, which can be written in normal mode coordinates

as

x =
n
∑

j=1

ξj(t)a(j).

As before, each ξj(t) behaves as a decoupled harmonic oscillator coordinate, with frequency

ωj , so

ξj(t) = Aj cos(ωjt+ ϕj).

The 2n constants Aj and ϕj are constants of integration, determined e.g. by the n initial

positions and velocities.

• An example: double pendulum:
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(Discuss the faster but perhaps tricky, and the slower but straightforwardly reliable ways

to get the m2 kinetic energy.)

U = m1gL1(− cosφ1) +m2g(−L1 cosφ1 − L2 cosφ2).

For small oscillations we expand sinφi ≈ φi and cosφi ≈ 1− 1
2φ

2
i . Keeping terms only of

order φ2 and lower, the E.L. equations for small oscillations yield

M
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dt2
φ = −Kφ,
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with
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(
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, K =
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0 m2gL2

)

.

As before, we solve this via φ(t) = Re(Ae−iωt) where A and the ω are determined by

solving

(K− ω2
M)a = 0.

Let’s write it in gory detail for the case of m1 = m2 = m and L1 = L2 = L, with
√

g/L ≡ ω0:
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= 0,

from which it follows that the two normal mode frequencies are
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0 ,

with corresponding solutions
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.

• Example of three coupled pendulums. T =
∑3

i=1
1
2
mL2φ̇2

i , Ugrav ≈ 1
2
mgL

∑

i φ
2
i ,

and Uspring ≈ 1
2kL
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2). Set m = L = 1, since we can restore them

later. So M = m1 and

K =
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 ,

Then the characteristic equation gives ω2
1 = g, ω2

2 = g + k, ω2
3 = g + 3k, with modes
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