11/15 Lecture outline

e Last times: Two body central force problems, reduces to solving the 1d problem:
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H = 45 + Ues4(r) = E = constant.
Eliminate ¢ and solve for r(¢). Easier to change variables to u = 1/r, get

u"(¢) +u+ #F(r) = 0.

Kepler orbits: U(r) = —k/r, so F(r) = —k/r?. (Sign is chosen so that k > 0 corresponds

to an attractive force). Get

W(6) = —ul(9) + ky/ 2,
which is like the free particle, if we substitute w = u — ku/¢?, so
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where € is a constant, which can be written in terms of the energy as
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So € < 1 gives bounded orbits, and € > 1 gives unbounded orbits. For ¢ < 1 the
equation is an ellipse (with special case being a circle for ¢ = 0). For ¢ > 1 it is a
hyperbola. For ¢ =1 it is a parabola.

e For £ < 0 (bound orbits) get € < 1, and the above conic section is an ellipse. The
ellipse has major and minor semi-axes given by
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Also,

rmm:%ﬂ:a(l—e), rmaleieza(l—f—e).
Since 1 — €2 = —2E/(?/uk? = 2|E|(?/uk? we have
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The period of revolution is given by recalling dA/dt = £/2u (Kepler’s 2nd law), so the
period is 7 = A/A = 2wabu/l so
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Note that the period is uniquely determined by the energy.

For a comet or planet orbiting the sun, k = Gmims ~ GuM, so 72 ~ 47r2a3/GM5;
Kepler’s 3rd law. History lesson: Tycho Brahe (1546-1601) took the data, and hired Kepler
in 1600 as his assistant to help and to interpret the data. The planet’s average distance

2 ~ a®. The actual earth-

relative to the earth-sun distance were obtained, and that gave 7
sun distance was obtained (to 7% error) in 1672 by Giovanni Cassini by using parallax (to
obtain the earth-mars distance). In 1672, this was used to determine the constancy of the
speed of light by astronomer Olaf Roemer.

e For e = 1, get y?> = ¢® — 2cx, a parabola. For € > 1, get hyperbola:
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e Mechanical similarity. Suppose that all lengths are rescaled: 7; — ar;. Suppose
that the potential energy is homogenous function of degree n, i.e. U(ar;) = a"U(75).
Examples: for U = k/r, we have n = —1; for U = %krz we have n = 2. Suppose that
we also scale time as t — (t. Then velocities scale as v — %17, and kinetic energy scales

as T — g—zT. Assuming that the potential scales homogeneously, the lagrangian also
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scales homogeneously if we take a?/3% = o, i.e. 8 = «
overall factor, the equations of motion are unchanged. This is interesting: it implies that
homogeneous potentials have similar solutions, differing only by rescalings, with properties
simply related. Let a be a length scale in a solution, and a’ be a length scale in the rescaled

solution, with a’/a = a. We then have
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For example, for U = —k/r, n = —1, and we immediately obtain that the period scales
1
with the orbit size as 7 ~ a' 72" = ¢3/2.

Recall also the viral theorem:

Taking £ =T + U a constant, we have E = (T) + (U) = (1 + in)(U) = (1 + 2)(T).
e Orbit change by tangential thrust at prigee. Initial and final orbits have the same

perigee
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The velocity at perigee changes to v = Av;. (The two orbits are not trivially related
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by mechanical similarity, since not all lengths are related by the same rescaling.) Since
V5 = My, we have co = A?c; and thus e; = A?e; + A2 — 1 > €, i.e. the orbit becomes more
eccentric for A > 1.

e Next and final topic: coupled oscillators and normal modes.

Example (from book) of two carts and 3 coupling springs:
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The Euler-Lagnrange equations can be written in matrix notation as
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where x is a column vector of the two positions and
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