
11/15 Lecture outline

• Last times: Two body central force problems, reduces to solving the 1d problem:

µ
d2r

dt2
= −dUeff (r)

dr
, Ueff = U(r) +

ℓ2

2µr2
, ℓ = µr2φ̇,

H = 1

2
µṙ2 + Ueff (r) = E = constant.

Eliminate t and solve for r(φ). Easier to change variables to u = 1/r, get

u′′(φ) + u+
µ

ℓ2u2
F (r) = 0.

Kepler orbits: U(r) = −k/r, so F (r) = −k/r2. (Sign is chosen so that k > 0 corresponds

to an attractive force). Get

u′′(φ) = −u(φ) + kµ/ℓ2,

which is like the free particle, if we substitute w = u− kµ/ℓ2, so

r(φ) =
c

1 + ǫ cosφ
, c ≡ ℓ2

kµ
. (1)

where ǫ is a constant, which can be written in terms of the energy as

ǫ =

√

1 +
2Eℓ2

µk2
.

Indeed,

E = Ueff (rmin) = − k

rmin
+

ℓ2

2µr2min

=
k2µ

2ℓ2
(ǫ2 − 1).

So ǫ < 1 gives bounded orbits, and ǫ > 1 gives unbounded orbits. For ǫ < 1 the

equation is an ellipse (with special case being a circle for ǫ = 0). For ǫ > 1 it is a

hyperbola. For ǫ = 1 it is a parabola.

• For E < 0 (bound orbits) get ǫ < 1, and the above conic section is an ellipse. The

ellipse has major and minor semi-axes given by

(x+ d)2

a2
+

y2

b2
= 1, a =

c

1− ǫ2
, b =

c√
1− ǫ2

, d = aǫ.

So
b

a
=

√

1− ǫ2, rmin =
c

1 + ǫ
, rmax =

c

1− ǫ
.
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Also,

rmin =
c

1 + ǫ
= a(1− ǫ), rmax =

c

1− ǫ
= a(1 + ǫ).

Since 1− ǫ2 = −2Eℓ2/µk2 = 2|E|ℓ2/µk2 we have

a =
k

2|E| , b =
ℓ

√

2µ|E|
.

The period of revolution is given by recalling dA/dt = ℓ/2µ (Kepler’s 2nd law), so the

period is τ = A/Ȧ = 2πabµ/ℓ so

τ = 2πa3/2
√

µ

k
= πk

√

µ

2|E|3 .

Note that the period is uniquely determined by the energy.

For a comet or planet orbiting the sun, k = Gm1m2 ≈ GµMs so τ2 ≈ 4π2a3/GMs;

Kepler’s 3rd law. History lesson: Tycho Brahe (1546-1601) took the data, and hired Kepler

in 1600 as his assistant to help and to interpret the data. The planet’s average distance

relative to the earth-sun distance were obtained, and that gave τ2 ∼ a3. The actual earth-

sun distance was obtained (to 7% error) in 1672 by Giovanni Cassini by using parallax (to

obtain the earth-mars distance). In 1672, this was used to determine the constancy of the

speed of light by astronomer Olaf Roemer.

• For ǫ = 1, get y2 = c2 − 2cx, a parabola. For ǫ > 1, get hyperbola:

(x− δ)2

α2
− y2

β2
= 1.

• Mechanical similarity. Suppose that all lengths are rescaled: ~ri → α~ri. Suppose

that the potential energy is homogenous function of degree n, i.e. U(α~ri) = αnU(~ri).

Examples: for U = k/r, we have n = −1; for U = 1

2
kr2 we have n = 2. Suppose that

we also scale time as t → βt. Then velocities scale as ~v → α
β~v, and kinetic energy scales

as T → α2

β2T . Assuming that the potential scales homogeneously, the lagrangian also

scales homogeneously if we take α2/β2 = αn, i.e. β = α1−
1

2
n. Since the scale is just an

overall factor, the equations of motion are unchanged. This is interesting: it implies that

homogeneous potentials have similar solutions, differing only by rescalings, with properties

simply related. Let a be a length scale in a solution, and a′ be a length scale in the rescaled

solution, with a′/a = α. We then have

t′

t
= α1−

1

2
n,

v′

v
= α

1

2
n,

E′

E
= αn, ~L′ = ~Lα1+

1

2
n.
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For example, for U = −k/r, n = −1, and we immediately obtain that the period scales

with the orbit size as τ ∼ a1−
1

2
n = a3/2.

Recall also the viral theorem:

2〈T 〉 = n〈U〉.

Taking E = T + U a constant, we have E = 〈T 〉+ 〈U〉 = (1 + 1

2
n)〈U〉 = (1 + 2

n
)〈T 〉.

• Orbit change by tangential thrust at prigee. Initial and final orbits have the same

perigee

rmin =
c1

1 + ǫ1
=

c2
1 + ǫ2

.

The velocity at perigee changes to v2 = λv1. (The two orbits are not trivially related

by mechanical similarity, since not all lengths are related by the same rescaling.) Since

ℓ2 = λℓ1, we have c2 = λ2c1 and thus ǫ2 = λ2ǫ1 + λ2 − 1 > ǫ1, i.e. the orbit becomes more

eccentric for λ > 1.

• Next and final topic: coupled oscillators and normal modes.

Example (from book) of two carts and 3 coupling springs:

L = 1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 − 1

2
k1x

2
1 − 1

2
k2(x1 − x2)

2 − 1

2
k3x

2
2.

The Euler-Lagnrange equations can be written in matrix notation as

M
d2

dt2
x = −Kx.

where x is a column vector of the two positions and

M =

(

m1 0
0 m2

)

K =

(

k1 + k2 −k2
−k2 k2 + k3

)

.
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