11/14 Lecture outline

e Last times: Two body central force problems, reduces to solving the 1d problem:
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e Orbit equations have solution r = r(t) and ¢ = ¢(t). Let’s study the shape of the

trajectory rather than the ¢ dependence. Eliminating the parameter t, we can solve for
r =1r(¢). To do this, use
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where u = 1/r is introduced for convenience. So
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and the r EOM becomes (with F(r) = —dU/dr)
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e For circular orbits, u = ug =constant. For nearly circular orbits, we can write
u = ug + 6(¢) and expand the above to find an equation for d(¢). Let’s instead write it in
terms of the original variable r, so r = ro +1(¢) and then plug into the equation above to

find P
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A solution is 1(¢) = 1o cos f¢. The maximum is chosen at ¢,, = 27n/f.
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e Consider the general orbit equation above for the example of a free particle, F'(r) = 0.
The solution is u(¢) = ry ' cos(¢ — d), the equation of a straight line. Good.
e Kepler orbits: U(r) = —k/r, so F(r) = —k/r%. (Sign is chosen so that k& > 0

corresponds to an attractive force). Get
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which is like the free particle, if we substitute w = u — ku/¢?, so
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where € is a constant, which can be written in terms of the energy as
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e Another option is to solve for 7(¢) by using energy conservation at the outset. As
usual, this is better because F' = ma gives a 2nd order differential equation, whereas

energy conservation does one of those integrals for us, leaving just a first order equation

remaining to integrate. Using the relation (see above) % = M—fiz%, we get
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and substituting into energy conservation then gives
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which we can use to solve for dr/d¢, and then integrate the equation to obtain
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For the particular case of U = —k/r the integral indeed leads to the r(¢) given above.
e Continue with U = —k/r. The energy is
k 0 k2 u

B = Uegg(rmin) = ==+ g = 5 (€ = 1),




