10/28 Lecture outline

• Last time, conservation of momentum and angular momentum from spatial translation and rotation symmetry, respectively. Now consider time translations $t \to t + \delta t$. Recall that we showed before that

$$
\frac{d}{dt} \left[\sum_i q_i \frac{\partial L}{\partial \dot{q}_i} - L \right] = -\frac{\partial L}{\partial t}.
$$

When L does not depend explicitly on t , time translations is a symmetry of the action, and the corresponding conserved quantity is the Hamiltonian

$$
H = \sum_{i} \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L.
$$

When this is conserved, it is the energy.

- $H = H(q, p, t)$. Find dH and show $\dot{q} = \partial H/\partial p$ and $\dot{p} = -\partial H/\partial q$ and $\frac{dH}{dt} = -\frac{\partial L}{\partial t}$.
- Get $H = T + U$ if Cartesian $\vec{r}_a = \vec{r}_a(q_i)$ is t independent.

• Example where H is conserved but $H \neq T + U$, bead on spinning hoop. $T =$ $\frac{1}{2}ma^2(\dot{\theta}^2+\omega^2\sin^2\theta), U=-mga\cos\theta.$ Since $\frac{\partial L}{\partial t}=0$, we have the conserved quantity

$$
H_{bead} = p_{\theta}\dot{\theta} - L = \frac{1}{2}ma^2\dot{\theta}^2 - \frac{1}{2}ma^2\omega^2\sin^2\theta - mga\cos\theta,
$$

which differs from $E_{bead} = T + U$, $H_{bead} = E_{bead} - ma^2\omega^2 \sin^2\theta(t)$. Indeed, E_{bead} is not constant, because external driver that's spinning the hoop is doing t dependent work W_{ext} on the system.

• Example of charged particle in electric and magnetic fields, $\vec{E} = -\nabla\phi - \frac{\partial \vec{A}}{\partial t}, \vec{B} =$ $\nabla \times \vec{A}.$

$$
L = \frac{1}{2}m\dot{\vec{r}}^2 - q\phi + \dot{q}\dot{\vec{r}} \cdot \vec{A}.
$$

Get $\vec{p} = m\vec{v} + q\vec{A}$. Gauge invariance. Hamiltonian.

• Now discuss systems with constraints. Example: pendulum:

$$
\mathcal{L} = \frac{1}{2}m\ell^2\dot{\phi}^2 + mg\ell\cos\phi
$$

has 1 d.o.f., namely ϕ . Alternatively, we could use $x_{bob} = \ell \sin \phi$ and $y_{bob} = -\ell \cos \phi$, with the constraint $x_{bob}^2 + y_{bob}^2 = \ell^2$. This is an example of a *holonomic constraint*, which more generally are constraints of the form:

$$
f(q_i, t) = 0.
$$

We want to extremize the action, subject to the requirement that the variations δq_i should satisfy the constraint. A way to do this is to introduce a Lagrange multiplier. We replace the Lagrangian with

$$
\mathcal{L} + \lambda f,
$$

where λ is the Lagrange multiplier.