10/26 Lecture outline

• Last time, Noether's theorem: continuous symmetries implies conservation laws. If \mathcal{L} is invariant under $q_i \to q_i(\xi)$, with infinitesimal change $\delta q_i = \frac{\partial q_i}{\partial \xi} \delta \xi$, then

$$0 = \delta L = \frac{\partial L}{\partial q_i} \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i = \frac{d}{dt} (\frac{\partial L}{\partial \dot{q}_i} \delta q_i),$$

from which it follows that

$$\frac{\partial L}{\partial \dot{q}_i} \frac{\partial q_i(\xi)}{\partial \xi}|_{\xi=0}$$

is a conserved quantity.

• If L is independent of a coordinate q ("cyclic"), then there is a symmetry $q \rightarrow q + \xi$, and the conserved quantity is simply the corresponding conjugate momentum $p = \partial L/\partial \dot{q}$. The above result is more non-trivial when the symmetry is less obvious. Example: particle in 2d with U = U(r) has symmetry $\phi \rightarrow \phi + \xi$, gives conserved $\ell = mr^2 \dot{\phi}$. Or use above in rectangular coordinates, infinitesimal rotation $\delta x = -d\xi y$, $\delta y = d\xi x$, so $\delta \vec{x} = d\xi \hat{z} \times \vec{x}$, gives conserved \vec{L}_z .

• Example of helical symmetry: $U(\rho, \phi, z) = U(\rho, a\phi + z)$ has symmetry $\phi \to \phi + \xi$, $z \to z - \xi a$, gives conserved quantity $m\rho^2 \dot{\phi} - ma\dot{z}$.

• Isolated system of particles has translation symmetry $\vec{x}_a \to \vec{x}_a + \xi \vec{n}$. Gives conserved quantity $\vec{n} \cdot \vec{P}$, where \vec{P} is the total momentum. Conservation of total momentum.

• Isolated system has rotation symmetry: $\delta \vec{x}_a = \xi \hat{n} \times \vec{x}_a$. Gives conserved quantity

$$\sum_{a} \frac{\partial L}{\partial \dot{x}_{a}} \cdot \hat{n} \times \vec{x}_{a} = \hat{n} \cdot \vec{L}, \qquad \vec{L} = \sum_{a} \vec{x}_{a} \times \vec{p}_{a},$$

i.e. conservation of total angular momentum.