10/24 Lecture outline

e EL equations
oL d oL
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We showed that these equations imply that
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so if L doesn’t depend explicitly on ¢, then

q = constant(= F).
e ‘Cyclic” coordinates (OL/0qcyciic = 0) and peyeric = constant conservation law.
e Last time, example of sliding point mass on sliding wedge. L = %]\4)'(2 + %m(X +
)2+ %ma’:z tan? a — mgz tan . Here X is a cyclic coordinate and conserved quantity px
is the expected momentum conservation.

e Example of motion in 2d central potential U = U(r),
L=im(i*+ r2¢?) — U(r)

so ¢ is a cyclic coordinate, dL/0¢ = 0, and correspondingly pg = mr2q3 = ( is conserved.
This is related to the rotation symmetry, ¢ — ¢+ constant, as we’ll soon discuss. The r

equation of motion (EOM) is
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We can now eliminate ¢ in favor of £ to get
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Here U.yy is an effective potential which accounts for the centrifugal force of the rotating
object. The energy is also conserved:
. - p?
H=p.7+pyop— L = ﬁ + Ueff(T>.

We can think of this as an effective 1d problem with

,Ceff == %mf2 — Ueff(T).



Caution: it is important that we eliminated q/) in favor of £ only after computing the
Euler-Lagrange equations of motion for r. If we had replaced mr2¢ — ¢ directly in the
original Lagrangian we would have obtained not the above L.r; but instead one where
the ¢2/2mr? term has the wrong sign. The mistake is because the E.L. equation for r has
partial derivatives like % where ¢ and ¢ are supposed to be held constant. On the other
hand, if we plug ¢ back into £ directly, we make the mistake of instead holding ¢ = mr2q3
constant. The particle has 2 degrees of freedom, and it is important to compute the EOM
for the two independent coordinates, before using the conservation law to eliminate the
cyclic coordinate.

e Noether’s theorem: continuous symmetries implies conservation laws. If £ is invari-
ant under ¢; — ¢;(§), with infinitesimal change d¢; = %—%55 , then
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from which it follows that
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is a conserved quantity.

e If L is independent of a coordinate ¢, then there is a symmetry ¢ — ¢ + &, and the
conserved quantity is simply the corresponding conjugate momentum p = 9L/9¢. The
above result is more non-trivial when the symmetry is less obvious. Example: particle in
2d with U = U(r) has symmetry ¢ — ¢ + &, gives conserved ¢ = mr2é. (Or use above in
rectangular coordinates.)

e Example of helical symmetry: U(p, ¢,2) = U(p,ap + z) has symmetry ¢ — ¢ + &,
z — z — Ea, gives conserved quantity megb — maz.

e System of particles has translation symmetry z, — &, +£7, gives conserved quantity
- ]3, where P is the total momentum. Conservation of momentum.

e Rotation symmetry: 67, = {n X T, gives conserved quantity
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i.e. conservation of angular momentum.
e Now consider time translations ¢t — ¢ + 6t. When L does not depend explicitly
on t, this is a symmetry of the action, and the corresponding conserved quantity is the

Hamiltonian




When this is conserved, it is the energy.

e H=H(q,p,t). Find dH and show ¢ = 0H/0p and p = —0H /0q and % = —%.

e Get H = T + U if Cartesian 7, = 7,(g;) is t independent. Example of bead on
spinning hoop. T = %ma2(92 +w?sin?6), U = mga(1 — cosb).

e Example of charged particle in electric and magnetic fields, E=— Vo — %—’?, B =

V x A.
L:%mig—ng-l—q?-ff.

Get p'=mv + qff. Gauge invariance. Hamiltonian.



