
10/24 Lecture outline

• EL equations
∂L

∂qi
−

d

dt

∂L

∂q̇i
= 0.

We showed that these equations imply that

d

dt
[
∑

i

qi
∂L

∂q̇i
− L] = −

∂L

∂t
,

so if L doesn’t depend explicitly on t, then

∑

i

qi
∂L

∂q̇i
− L = constant(= E).

• ‘Cyclic” coordinates (∂L/∂qcyclic = 0) and pcyclic = constant conservation law.

• Last time, example of sliding point mass on sliding wedge. L = 1

2
MẊ2 + 1

2
m(Ẋ +

ẋ)2 + 1

2
mẋ2 tan2 α−mgx tanα. Here X is a cyclic coordinate and conserved quantity pX

is the expected momentum conservation.

• Example of motion in 2d central potential U = U(r),

L = 1

2
m(ṙ2 + r2φ̇2)− U(r)

so φ is a cyclic coordinate, ∂L/∂φ = 0, and correspondingly pφ = mr2φ̇ = ℓ is conserved.

This is related to the rotation symmetry, φ → φ+ constant, as we’ll soon discuss. The r

equation of motion (EOM) is

d

dt

∂L

∂ṙ
=

∂L

∂r
→ m

d2

dt2
r = mrφ̇2 − U ′(r).

We can now eliminate φ̇ in favor of ℓ to get

m
d2r

dt2
=

ℓ2

mr3
− U ′(r) ≡ −

d

dr
Ueff , Ueff = U(r) +

ℓ2

2mr2
.

Here Ueff is an effective potential which accounts for the centrifugal force of the rotating

object. The energy is also conserved:

H = pr ṙ + pφφ̇− L =
p2r
2m

+ Ueff (r).

We can think of this as an effective 1d problem with

Leff = 1

2
mṙ2 − Ueff (r).
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Caution: it is important that we eliminated φ̇ in favor of ℓ only after computing the

Euler-Lagrange equations of motion for r. If we had replaced mr2φ̇ → ℓ directly in the

original Lagrangian we would have obtained not the above Leff but instead one where

the ℓ2/2mr2 term has the wrong sign. The mistake is because the E.L. equation for r has

partial derivatives like ∂
∂r

where φ and φ̇ are supposed to be held constant. On the other

hand, if we plug ℓ back into L directly, we make the mistake of instead holding ℓ = mr2φ̇

constant. The particle has 2 degrees of freedom, and it is important to compute the EOM

for the two independent coordinates, before using the conservation law to eliminate the

cyclic coordinate.

• Noether’s theorem: continuous symmetries implies conservation laws. If L is invari-

ant under qi → qi(ξ), with infinitesimal change δqi =
∂qi
∂ξ

δξ, then

0 = δL =
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i =

d

dt
(
∂L

∂q̇i
δqi),

from which it follows that
∂L

∂q̇i

∂qi(ξ)

∂ξ
|ξ=0

is a conserved quantity.

• If L is independent of a coordinate q, then there is a symmetry q → q + ξ, and the

conserved quantity is simply the corresponding conjugate momentum p = ∂L/∂q̇. The

above result is more non-trivial when the symmetry is less obvious. Example: particle in

2d with U = U(r) has symmetry φ → φ+ ξ, gives conserved ℓ = mr2φ̇. (Or use above in

rectangular coordinates.)

• Example of helical symmetry: U(ρ, φ, z) = U(ρ, aφ+ z) has symmetry φ → φ + ξ,

z → z − ξa, gives conserved quantity mρ2φ̇−maż.

• System of particles has translation symmetry ~xa → ~xa+ξ~n, gives conserved quantity

~n · ~P , where ~P is the total momentum. Conservation of momentum.

• Rotation symmetry: δ~xa = ξn̂× ~xa gives conserved quantity

∑

a

∂L

∂ẋa

· n̂× ~xa = n̂ · ~L, ~L =
∑

a

~xa × ~pa,

i.e. conservation of angular momentum.

• Now consider time translations t → t + δt. When L does not depend explicitly

on t, this is a symmetry of the action, and the corresponding conserved quantity is the

Hamiltonian

H =
∑

i

∂L

∂q̇i
q̇i − L.
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When this is conserved, it is the energy.

• H = H(q, p, t). Find dH and show q̇ = ∂H/∂p and ṗ = −∂H/∂q and dH
dt

= −∂L
∂t

.

• Get H = T + U if Cartesian ~ra = ~ra(qi) is t independent. Example of bead on

spinning hoop. T = 1

2
ma2(θ̇2 + ω2 sin2 θ), U = mga(1− cos θ).

• Example of charged particle in electric and magnetic fields, ~E = −∇φ − ∂ ~A
∂t

, ~B =

∇ × ~A.

L = 1

2
m~̇r

2

− qφ+ q~̇r · ~A.

Get ~p = m~v + q ~A. Gauge invariance. Hamiltonian.
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