10/21 Lecture outline
e Last time, S[¢;, ¢i,t] = [ dtL(g;, ¢;,t), extremized for the ¢;.(t) solving EL equations
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We showed that these equations imply that
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so if L doesn’t depend explicitly on ¢, then

L
Z ng—q@ — L = constant(= E).
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Generalized coordinates ¢;(t), with generalized momenta p; = IR then the Euler-Lagrange

equations can be written as
oL d
aql - dtpl?

which is a generalized version of F = i—f . Note that, if the Lagrangian does not depend
explicitly on a coordinate g;, then the conjugate momentum p; is conserved.

Continue with our example, pendulum: L = %m[zéz —mgl(1 — cos¢). Let ¢ = ¢ be
the generalized coordinate, and then the generalized momentum is p = m£2<;5, which is just

the angular momentum. Euler Lagrange equations give
—mglsin ¢ = mZQié
g - dt Y

which is the expected 7 = I« result from 7 = %E.

e Example: particle in polar coordinates:
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e Comment on dimensional analysis: [Lagrangian] ~ [E] ~ ML?/T?. Generalized
coordinates might have units of length (like z) or no units (like ¢) etc. Units work out
consistently in any case, as in the above examples.

e Another comment: can always change L — L + %G(q,q,t) without affecting the
EL equations of motion. The Lagrangian is inherently ambiguous, in a way that doesn’t
matter anyway at the end of the day.

e More examples: sliding point mass on sliding wedge. T' = %AMX2 + %m(X + )% +
%mg}Q, with y = xtana, and U = mgz tana.

e Pendulum attached to moving support: support at x(t) (given) and mass m bob
at Tpop = Ts + €sin g, Ypop = —Lcosep. So L = %m(azg + 240 cos b + EQQZ}Q) + mg/ cos ¢.
Compute EL equations for ¢(t), see d®z,/dt* cos ¢ enters as a forcing term.

e Pendulum attached to mass on spring. Coordinates (x, ), with
T = IMi%+ Im(ad, + v2) = (M +m)i* + 1me?6? + me cos 010

and U = %kxz — mgl cos 0, where we used xpop = x + £sinb, ypop = —f cos .

e Note that T = im(ds®/dt?), so can use e.g. ds? = dr? + r2df? or ds* = dr? +
r2df? + 12 sin? 0d$? if we want to use polar or spherical coordinates.

e Next time, “cyclic” coordinates (0L/0qcyciic = 0) and conservation laws. E.g.

example of motion in 2d central potential U = U(r),
L=im@#? +r2¢*) - U(r)

so ¢ is a cyclic coordinate, dL/0¢ = 0, and correspondingly pg = mr2¢ = ¢ is conserved.
This is related to the rotation symmetry, ¢ — ¢+ constant, as we’ll soon discuss. The r

equation of motion (EOM) is

doL oL d? ‘5 ,
%E—W%m@r—mnﬁ —U'(r).

We can now eliminate ¢ in favor of £ to get
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Here U,y is an effective potential which accounts for the centrifugal force of the rotating
object. The energy is also conserved:
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