
10/21 Lecture outline

• Last time, S[qi, q̇i, t] =
∫
dtL(qi, q̇i, t), extremized for the qi∗(t) solving EL equations

∂L

∂qi
−

d

dt

∂L

∂q̇i
= 0.

We showed that these equations imply that

d

dt
[
∑

i

qi
∂L

∂q̇i
− L] = −

∂L

∂t
,

so if L doesn’t depend explicitly on t, then

∑

i

qi
∂L

∂q̇i
− L = constant(= E).

Generalized coordinates qi(t), with generalized momenta pi ≡
∂L
∂q̇i

, then the Euler-Lagrange

equations can be written as
∂L

∂qi
=

d

dt
pi,

which is a generalized version of ~F = d~p
dt
. Note that, if the Lagrangian does not depend

explicitly on a coordinate qi, then the conjugate momentum pi is conserved.

Continue with our example, pendulum: L = 1

2
mℓ2φ̇2 −mgℓ(1− cosφ). Let q = φ be

the generalized coordinate, and then the generalized momentum is p = mℓ2φ̇, which is just

the angular momentum. Euler Lagrange equations give

−mgℓ sinφ = mℓ2
d

dt
φ̇,

which is the expected τ = Iα result from ~τ = d
dt
~L.

• Example: particle in polar coordinates:

L = 1

2
m(ρ̇2 + ρ2φ̇2)− U(ρ, φ),

mρφ̇2
−

∂U

∂ρ
=

d

dt
(mρ̇),

−
∂U

∂φ
=

d

dt
(mρ2φ̇).

E = 1

2
m(ρ̇2 + ρ2φ̇2) + U.
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• Comment on dimensional analysis: [Lagrangian] ∼ [E] ∼ ML2/T 2. Generalized

coordinates might have units of length (like x) or no units (like φ) etc. Units work out

consistently in any case, as in the above examples.

• Another comment: can always change L → L + d
dt
G(q, q̇, t) without affecting the

EL equations of motion. The Lagrangian is inherently ambiguous, in a way that doesn’t

matter anyway at the end of the day.

• More examples: sliding point mass on sliding wedge. T = 1

2
MẊ2 + 1

2
m(Ẋ + ẋ)2 +

1

2
mẏ2, with y = x tanα, and U = mgx tanα.

• Pendulum attached to moving support: support at xs(t) (given) and mass m bob

at xbob = xs + ℓ sinφ, ybob = −ℓ cosφ. So L = 1

2
m(ẋ2

s + 2ẋsℓ cosφφ̇ + ℓ2φ̇2) +mgℓ cosφ.

Compute EL equations for φ(t), see d2xs/dt
2 cosφ enters as a forcing term.

• Pendulum attached to mass on spring. Coordinates (x, θ), with

T = 1

2
Mẋ2 + 1

2
m(ẋ2

bob + ẏ2bob) =
1

2
(M +m)ẋ2 + 1

2
mℓ2θ̇2 +mℓ cos θẋθ̇

and U = 1

2
kx2 −mgℓ cos θ, where we used xbob = x+ ℓ sin θ, ybob = −ℓ cos θ.

• Note that T = 1

2
m(ds2/dt2), so can use e.g. ds2 = dr2 + r2dθ2 or ds2 = dr2 +

r2dθ2 + r2 sin2 θdφ2 if we want to use polar or spherical coordinates.

• Next time, “cyclic” coordinates (∂L/∂qcyclic = 0) and conservation laws. E.g.

example of motion in 2d central potential U = U(r),

L = 1

2
m(ṙ2 + r2φ̇2)− U(r)

so φ is a cyclic coordinate, ∂L/∂φ = 0, and correspondingly pφ = mr2φ̇ = ℓ is conserved.

This is related to the rotation symmetry, φ → φ+ constant, as we’ll soon discuss. The r

equation of motion (EOM) is

d

dt

∂L

∂ṙ
=

∂L

∂r
→ m

d2

dt2
r = mrφ̇2

− U ′(r).

We can now eliminate φ̇ in favor of ℓ to get

m
d2r

dt2
=

ℓ2

mr3
− U ′(r) ≡ −

d

dr
Ueff , Ueff = U(r) +

ℓ2

2mr2
.

Here Ueff is an effective potential which accounts for the centrifugal force of the rotating

object. The energy is also conserved:

H = pr ṙ + pφφ̇− L =
p2r
2m

+ Ueff (r).
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