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• Last time: consider a general functional F [y(x)] =
∫ x2

x1

dxf(y(x), y′(x), x]dx. The

variation is

δF ≡ F [y + δy]− F [y] =

∫

dx

(

∂f

∂y
−

d

dx

∂f

∂y′

)

δy(x).

In the second term we integrated by parts and dropped the boundary term (because we take

δy to preserve the endpoint boundary conditions. The functional is therefore stationary

for y(x) = y∗(x) which solves the Euler-Lagrange equation

∂f

∂y
−

d

dx

∂f

∂y′
= 0.

Our functional of particular interest is the action, S[q(t)] =
∫ t2
t1

dtL[q(t), q̇(t), t], where

q(t) is some (generalized) coordinate. The Euler-Lagrange equation for least (stationary)

action is:
∂L

∂q
−

d

dt

∂L

∂q̇
= 0.

If there are many coordinates qi(t), the action should be stationary for all of them, so each

one is determined by an independent Euler-Lagrange equation:

∂L

∂qi
−

d

dt

∂L

∂q̇i
= 0.

• Apply to some examples.

Minimal area: A[y] =
∫ x2

x1

dx2πy
√

1 + y′2 ≡
∫

dxL. Because the integrand doesn’t

explicitly depend on x, the Euler-Lagrange equations in this case imply that

y′
∂L

∂y′
− L = const,

implying that y = b cosh((x− a)/b), where a and b are constants; this is a catenary. (Also

shape of drooping stretched rope.)

Fermat principle and similar problems, e.g. Brachistochrone:

T =

∫ θ2

θ1

1

v(x, y)

√

dx

dθ

2

+
dy

dθ

2

dθ,

where we introduced the parameter θ as a convenience (alternatively, we can work in terms

of y(x) or x(y)). Let’s call x(θ) = q1(θ) and y(θ) = q2(θ). The stationary path has

−
1

v2

√

dx

dθ

2

+
dy

dθ

2 ∂v

∂qi
−

d

dθ





1

v

√

dx
dθ

2

+ dy
dθ

2

dqi
dθ



 = 0.
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In particular, for the Brachistochrone, v =
√
2gy, we get

d

dθ





dx
dθ

√
y

√

dx
dθ

2

+ dy
dθ

2



 = 0,

−1

2
y−3/2

√

dx

dθ

2

+
dy

dθ

2

−
d

dθ





dy
dθ

√
y

√

dx
dθ

2

+ dy
dθ

2



 = 0.

The solution is a cycloid: x = a(θ − sin θ), y = a(1− cos θ).

• Return to our problem of interest, S =
∫

dtL with L = T − V . The action is

stationary if
δS

δx(t)
=

∂L

∂x(t)
−

d

dt

∂L

∂ẋ(t)
= 0.

If we take L = 1

2
mẋ2 − U(x), then the above yields

−
∂U

∂x
−

d

dt
mẋ = 0,

which is just F = ma. Q: is this just a more complicated rewriting of something we already

knew from Newton’s Principia? A: Basically, yes - but it’s useful! We can write T and V

independent of any choice of coordinates, and they’re scalar rather than vector quantities.

Aside: there’s a nice way to formulate QM which gives the action S some independent

physical meaning.

• Generalized coordinates qi(t), with generalized momenta pi ≡
∂L
∂q̇i , then the Euler-

Lagrange equations can be written as

∂L

∂qi
=

d

dt
pi,

which is a generalized version of ~F = d~p
dt . Note that, if the Lagrangian does not de-

pend explicitly on a coordinate qi, then the conjugate momentum pi is conserved. If the

Lagrangian does not depend explicitly on time, then

E =
∑

i

piq̇i − L

is conserved.
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