
10/26 Lecture outline

? Reading: Luke, chapter 7

• Last time, phase space factors. Put the system in a box of volume V . The momenta

are quantized and, as usual, there are V d3~k/(2π)3 states with ~k in the range d3~k. Interested

in computing probabilities, P = |〈f |i〉|2/〈f |f〉〈i|i〉. Use e.g. 〈k|k〉 = (2π)32ωδ3(0) and

replace δ3(0) → V . Put these normalization factors into correct normalization of initial

and final states:

〈f |(S − 1)|i〉V T = iAV T
fi δ4(pF − pI)

∏

f

1√
2ωkV

∏

i

1√
2ωkV

,

where the factors account for the relativistic normalization of the states. Squaring, with the

replacement (2π4δ4(p))2 → V T (2π)4δ4(p) (since
∫

d4xei0·x = V T ) get that the probability

per unit time is

|Afi|2V D
∏

i

1

2EiV
,

where

D = (2π)4δ4(pF − pI)
∏

f

d3pf

(2π)32Ef

.

Decays: differential decay probability per unit time: dΓ = 1
2M

|Afi|2D. Integrate over

all possible final states to get Γ = 1/τ where τ is the lifetime.

Cross sections: the number of scatterings per unit time is dN = Fdσ, where F is the

flux. So

dσ =
A2

fi

4E1E2V
D

V

|~v1 − ~v2|
,

where the last factor is from dividing by the flux, using that the particle density is 1/V

(get V/V 2 for colliding two beams).

Note that this is relativistic. Write dNdt = (dσ|~v1 − ~v2|ρ1ρ2)(V dt), the LHS is the

number of collisions, which should be the same in any frame, and the factor (Vdt) on the

RHS is relativistically invariant. For simplicity, and with collider applications in mind,

we’re takeing ~v1 and ~v2 to be parallel, ~v1 × ~v2 = 0 (otherwise replace |~v1 − ~v2| with
√

(~v1 − ~v2)2 − (~v1 × ~v2)2). We want dσ to be defined to be the cross section in the rest

frame of one of the particles, so we want to define it to be boost invariant. So we need

to show that |~v1 − ~v2|ρ1ρ2 is boost invariant; in the rest frame of particle 2 it reduces

to vrelρ1ρ2, which is what we want. Let’s just check it. Under a boost to a frame with
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relative velocity u (taken along the direction of ~v1 and ~v2, we have vi → (vi + u)/(1+ viu)

and ρi → ρiγu(1 + viu), so |~v1 − ~v2|ρ1ρ2 is indeed invariant.

For our application, we define ρi = 1/V in the lab frame.

Two body final states (in CM frame): D =
∫

d3~p1

(2π)32E1

d3~p2

(2π)32E2

(2π)4δ3(~p1 + ~p2)δ(E1 +

E2 − ET ) gives

D =

∫
1

(2π)34E1E2
p2
1dp1dΩ1(2π)δ(E1 + E2 − ET ).

Using E1 =
√

p2
1 + m2 and E2 =

√
p2
1 + m2 get ∂(E1 +E2)/∂p1 = p1ET /E1E2 and finally

D = p1dΩ1/16π2ET . This should be divided by 2! (more generally, n!) if the final states

are identical.

• Example. For µ2 > 4m2, consider φ → N̄N decay. A = −g, and get

Γ =
g2

2µ

p1

16π2µ

∫
dΩ1 =

g2

8πµ2

√
µ2 − 4m2

2
,

where the last factor is p1.

For 2 → 2 scattering in the CM frame,

dσ =
|A|2

4E1E2

pfdΩ1

16π2ET

1

|~v1 − ~v2|
=

|A|2pfdΩ1

64π2piE2
T

where we used |~v1 − ~v2| = p1(E
−1
1 + E−2

2 ) = piET /E1E2 in the CM frame, and pi is the

magnitude of the initial momentum, and pf is that of the final momentum.

• Green functions G̃(n)(p1, . . . , pn), computed with external leg propagators, allowed

to be off-shell. Can then compute e.g.

〈k3, k4|S − 1|k1k2〉 =
4∏

n=1

k2
n − m2

n

i
G̃(−k3,−k4, k1, k2),

where the factors are to amputate the external legs. Consider for example G̃(4)(k1, k2, k3, k4)

for 4 external mesons in our meson-nucleon toy model. The lowest order contribution is

at O(g0) and is

(2π)4δ(4)(k1 + k4)
i

k2
1 − µ2 + iε

(2π)4δ(4)(k2 + k3)
i

k2
2 − µ2 + iε

+ 2 permutations.

This is the −1 that we subtract in S − 1, and indeed would not contribute to 2 → 2

scattering using the above formula, because it is set to zero by
∏

n = 14(k2
n − m2

n) when

the external momenta are put on shell. To get a non-zero result, need a G̃(4) contribution

with 4 external propagators, which we get e.g. at O(g4) with an internal nucleon loop.
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