
10/21 Lecture outline

? Reading: Luke, chapter 5-7

• Last times, simple example of interacting theory:

L = 1
2 (∂φ2 − µ2φ2) + (∂ψ†∂ψ −m2ψ†ψ) − gφψψ†.

For NN → NN ,

iA = (−ig)2
(

i

(p1 − p′1) − µ2
+

i

(p1 − p′2) − µ2

)

.

N(p1) + N̄(p2) → N(p′1) + N̄(p′2) has

iA = (−ig)2
(

i

(p1 − p′1) − µ2
+

i

(p1 + p2) − µ2

)

.

N(p1) + N̄(p2) → φ(p′1)φ(p′2) has

iA = (−ig)2
(

i

(p1 − p′1) −m2
+

i

(p1 − p′2) −m2

)

.

N(p1) + φ(p2) → N(p′1) + φ(p′2) has

iA = (−ig)2
(

i

(p1 − p′2) −m2
+

i

(p1 + p2) −m2

)

.

• Mandelstam variables. s = (p1 +p2)
2, t = (p1−p′1)2, u = (p1−p′2)2, with s+t+u =

4m2 (more generally, s + t + u =
∑4

i=1m
2
i ). In CM, s = 4E2, t = −2p2(1 − cos θ), and

u = −2p2(1 + cos θ).

• We saw that the t channel term above is associated with the Yukawa potential.

The u channel term is similar. Now consider the s channel, in e.g. the N + N̄ scattering

amplitude. Using the CM relations ~p1 = −~p2 ≡ ~p and E1 = E2 =
√

p2 +m2 gives

A ∼ 1

4m2 + 4p2 − µ2 + iε
,

so for µ < 2m the denominator is always positive, and the amplitude decreases with

increasing p2. For µ > 2m there is a pole at (p1 + p2)
2 = µ2, where the intermediate

meson goes on shell. This leads to a peak (not a pole, of course; because the intermediate

particle is unstable anyway, the denominator gets an imaginary contribution), a resonance,

in the cross section. E.g. Z0 pole in e+e− → µ+µ−, but not in e+e− → γγ.

1



• Crossing symmetry, CPT.

• Compute probabilities by squaring the S-maxtrix amplitudes, but have to be careful

with the delta functions, since squaring the delta functions would give nonsense.

Consider quantum mechanics, with U(t) = Te−i
∫

t

H(t)dt,

〈f |U(t)|i〉 ≈ −i〈f |Hint|i〉
∫ t

0

dteiωt,

where ω = Ef − Ei. Squaring gives P (t) = 2|〈f |Hint|i〉|2(1 − cosωt)/ω2. For t → ∞,

multiply by dEfρ(Ef) and replace (1 − cosωt)/ω2 → πtδ(ω) to get

Ṗi→f = 2π|〈f |Hint|i〉|2ρ(E).

Fermi’s Golden Rule. But naively taking t → ∞ initially would have given amplitude

∼ δ(ω), and squaring that would give δ(ω)2, which needs to be replaced with δ(ω)2πT ,

and then divide by T to get the rate. Similarly in field theory, δ(p)2 should be replaced

with probability ∼ δ(p) times phase space volume factors.

• Phase space factors. Put the system in a box of volume V . The momenta are

quantized and, as usual, there are V d3~k/(2π)3 states with ~k in the range d3~k. Interested

in computing probabilities, P = |〈f |i〉|2/〈f |f〉〈i|i〉. Use e.g. 〈k|k〉 = (2π)32ωδ3(0) and

replace δ3(0) → V . Put these normalization factors into correct normalization of initial

and final states:

〈f |(S − 1)|i〉V T = iAV T
fi δ

4(pF − pI)
∏

f

1√
2ωkV

∏

i

1√
2ωkV

,

where the factors account for the relativistic normalization of the states. Squaring, with the

replacement (2π4δ4(p))2 → V T (2π)4δ4(p) (since
∫

d4xei0·x = V T ) get that the probability

per unit time is

|Afi|2V D
∏

i

1

2EiV
,

where

D = (2π)4δ4(pF − pI)
∏

f

d3pf

(2π)32Ef

.

Decays: differential decay probability per unit time: dΓ = 1
2M

|Afi|2D. Integrate over

all possible final states to get Γ = 1/τ where τ is the lifetime.
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Cross sections: the number of scatterings per unit time is dN = Fdσ, where F is the

flux. So

dσ =
A2

fi

4E1E2V
D

V

|~v1 − ~v2|
,

where the last factor is from dividing by the flux, using that the particle density is 1/V

(get V/V 2 for colliding two beams).

Note that this is relativistic. Write dNdt = (dσ|~v1 − ~v2|ρ1ρ2)(V dt), the LHS is the

number of collisions, which should be the same in any frame, and the factor (Vdt) on the

RHS is relativistically invariant. For simplicity we take ~v1 and ~v2 to be parallel, ~v1×~v2 = 0.

We want dσ to be defined to be the cross section in the rest frame of one of the particles,

so we want to define it to be boost invariant. So we need to show that |~v1 − ~v2|ρ1ρ2 is

boost invariant; in the rest frame of particle 2 it reduces to vrelρ1ρ2, which is what we

want. Let’s just check it. Under a boost to a frame with relative velocity u (taken along

the direction of ~v1 and ~v2, we have vi → (vi + u)/(1 + viu) and ρi → ρiγu(1 + viu), so

|~v1 − ~v2|ρ1ρ2 is indeed invariant.

For our application, we define ρi = 1/V in the lab frame.
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