10/19 Lecture outline

\star Reading: Luke, chapter 5

• Last time, simple example of interacting theory:

$$
\mathcal{L} = \frac{1}{2}(\partial \phi^2 - \mu^2 \phi^2) + (\partial \psi^{\dagger} \partial \psi - m^2 \psi^{\dagger} \psi) - g \phi \psi \psi^{\dagger}.
$$

Toy model for interacting nucleons and mesons. Treat last term as a perturbation. $N +$ $N \to N + N$, to $\mathcal{O}(g^2)$. The initial and final states are

$$
|i\rangle = b^{\dagger}(p_1)b^{\dagger}(p_2)|0\rangle, \qquad \langle f| = \langle 0|b(p'_1)b(p'_2).
$$

The term that contributes to scattering at $\mathcal{O}(g^2)$ is

$$
T\frac{(-ig)^2}{2!} \int d^4x_1 d^4x_2 \phi(x_1) \psi^{\dagger}(x_1) \psi(x_1) \phi(x_2) \psi^{\dagger}(x_2) \psi(x_2).
$$

The term that contributes to $S-1$ thus involves

$$
\langle p'_1 p'_2 | : \psi^\dagger(x_1) \psi(x_1) \psi^\dagger(x_2) \psi(x_2) : |p_1 p_2\rangle = \langle p'_1 p'_2 | : \psi^\dagger(x_1) \psi^\dagger(x_2) |0\rangle \langle 0 | \psi(x_1) \psi(x_2) |p_1, p_2\rangle.
$$

=
$$
\left(e^{i(p'_1 x_1 + p'_2 x_2)} + e^{i(p'_1 x_2 + p'_2 x_1)} \right) \left(e^{-i(p_1 x_1 + p_2 x_2)} + e^{-i(p_1 x_2 + p_2 x_1)} \right).
$$

The amplitude involves this times $D_F(x_1 - x_2)$ (from the contraction), with the prefactor and integrals as above. The final result is

$$
i(-ig)^2 \left[\frac{1}{(p_1 - p'_1)^2 - \mu^2} + \frac{1}{(p_1 - p'_2)^2 - \mu^2} \right] (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p'_1 - p'_2).
$$

Explicitly, in the CM frame, $p_1 = (\sqrt{p^2 + m^2}, e\hat{e})$ and $p_2 = (\sqrt{p^2 + m^2}, -p\hat{e}), p'_1 =$ $(\sqrt{p^2 + m^2}, p\hat{e}'), p'_2 = (\sqrt{p^2 + m^2}, -p\hat{e}'),$ where $\hat{e} \cdot \hat{e}' = \cos \theta$, and get

$$
\mathcal{A} = g^2 \left(\frac{1}{2p^2(1 - \cos \theta) + \mu^2} + \frac{1}{2p^2(1 + \cos \theta) + \mu^2} \right).
$$

As we'll discuss, scattering by ϕ exchange leads to an attractive Yukawa potential.

• Feynman diagrams. Each vertex gets $(-ig)(2\pi)^4 \delta^4(p_{total\ in})$, each internal line gets $\int \frac{d^4k}{(2\pi)}$ $\frac{d^4k}{(2\pi)^4}D_F(k^2)$, where D_F is the propagator, e.g. $D_F(k^2) = \frac{i}{k^2 - m^2 + i\epsilon}$. Result is $\langle f|(S-1)|i\rangle$, so divide by $(2\pi)^4\delta^4(p_F-p_I)$ to get $i\mathcal{A}_{fi}$.

If the diagram has no loops, the momentum conserving delta functions fix all internal momenta in terms of the external ones. When the diagram has $L \neq 0$ loops, the procedure

above yields integrals over the internal momenta of the loops. (Note that if a diagram has I internal lines and V vertices, then there are I momentum integrals, and V momentum conserving delta functions; one of these becomes overall momentum conservation, so there are $L = I - V - 1$ momentum integrals left to do, and L is the number of loops in the diagram.) Any loop momentum integrals require renormalization, which we'll discuss later (next quarter), so for now we'll just consider "tree-level" contributions, associated with diagrams without loops.

• More examples:

(1) $N(p_1) + \bar{N}(p_2) \rightarrow N(p'_1) + \bar{N}(p'_2)$ has

$$
i\mathcal{A} = (-ig)^2 \left(\frac{i}{(p_1 - p'_1) - \mu^2} + \frac{i}{(p_1 + p_2) - \mu^2} \right).
$$

(2) $N(p_1) + \bar{N}(p_2) \rightarrow \phi(p'_1)\phi(p'_2)$ has

$$
iA = (-ig)^2 \left(\frac{i}{(p_1 - p'_1) - m^2} + \frac{i}{(p_1 - p'_2) - m^2} \right).
$$

(3) $N(p_1) + \phi(p_2) \rightarrow N(p'_1) + \phi(p'_2)$ has

$$
i\mathcal{A} = (-ig)^2 \left(\frac{i}{(p_1 - p'_2) - m^2} + \frac{i}{(p_1 + p_2) - m^2} \right).
$$

• Mandelstam variables. $s = (p_1 + p_2)^2$, $t = (p_1 - p'_1)^2$, $u = (p_1 - p'_2)^2$, with $s + t + u =$ $4m^2$ (more generally, $s + t + u = \sum_{i=1}^4 m_i^2$). In CM, $s = 4E^2$, $t = -2p^2(1 - \cos\theta)$, and $u = -2p^2(1 + \cos \theta).$

• Yukawa potential. Indeed, the first term in e.g. the above $N + N$ scattering amplitude gives, upon using $(p_1 - p_1')^2 - \mu^2 = -(|\vec{p}_1 - \vec{p}_1'|^2 + \mu^2)$, and the Born approximation in NRQM, $A_{NR} = -i \int d^3 \vec{r} e^{-i(\vec{p}' - \vec{p})} U(\vec{r})$, the attractive Yukawa potential

$$
U(r) = \int \frac{d^3p}{(2\pi)^3} \frac{-(g/2m)^2 e^{i\vec{q}\cdot\vec{r}}}{|\vec{q}|^2 + \mu^2} = -\frac{(g/2m)^2}{4\pi r} e^{-\mu r}
$$

.

(The $1/(2m)^2$ is because we normalized the relativistic states with the extra factor of $2\omega_k \approx 2m$ as compared with standard nonrelativistic normalization.) This gives Yukawa's explanation of the attraction between nucleons, from meson exchange.