10/19 Lecture outline
* Reading: Luke, chapter 5

e Last time, simple example of interacting theory:
L =3(0¢" — ?¢%) + (0910 — m*PT) — gy,

Toy model for interacting nucleons and mesons. Treat last term as a perturbation. N +
N — N + N, to O(g?). The initial and final states are

i) = 6T ()b (p2)[0), {F] = (O[b(})D():
The term that contributes to scattering at O(g?) is

(—ig)?
2

T / 01 d oa () (1) (20 ) (2T (2)1) ().

The term that contributes to S — 1 thus involves
Piph] : T (@) ()0 (m2) v (22) « [pip2) = Piph] + T (21)1! (22)|0) (0 (1)1 (22) | p1, p2).
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The amplitude involves this times Dp(z; — z2) (from the contraction), with the prefactor

and integrals as above. The final result is
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Explicitly, in the CM frame, p; = (y/p? +m?,ee) and ps = (v/p? + m?2,—pe), pj =
(V/p? + m?2,pe’), py = (\/p?> + m?,—pe’), where € - € = cosf, and get

A=g? . + !
— 9 2p2(1 — cos0) + u2  2p2(1+cos) +pu? )"

As we’ll discuss, scattering by ¢ exchange leads to an attractive Yukawa potential.

e Feynman diagrams. Each vertex gets (—ig)(27)*0*(ptotas in), €ach internal line
gets fng’;lDF(kz), where Dp is the propagator, e.g. Dp(k?) = m Result is
(fI(S = 1)]i), so divide by (2m)*6*(pr — pr) to get iAy;.

If the diagram has no loops, the momentum conserving delta functions fix all internal

momenta in terms of the external ones. When the diagram has L # 0 loops, the procedure
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above yields integrals over the internal momenta of the loops. (Note that if a diagram has
I internal lines and V' vertices, then there are I momentum integrals, and V' momentum
conserving delta functions; one of these becomes overall momentum conservation, so there
are L = I —V — 1 momentum integrals left to do, and L is the number of loops in the
diagram.) Any loop momentum integrals require renormalization, which we’ll discuss later
(next quarter), so for now we’ll just consider “tree-level” contributions, associated with
diagrams without loops.

e More examples:

(1) N(p1) + N(p2) — N(p}) + N(p3) has

A = (—ig)? L ' :
i = (~ig) ((pl—p’l)—u2+(191+p2>_“2)

(2) N(p1) + N(p2) — ¢(p))o(ph) has

iA=(—ig)? ((p1 _pé) 2t (p1 —Pz) - m2) .

(3) N(p1) + ¢(p2) — N(py) + ¢(ph) has

iA = (—ig)? ((p1 —pZ) —m? " +pi) - m2) .

e Mandelstam variables. s = (p1 +p2)?, t = (p1 —p})%, u = (p1 —ph)?, with s+t+u =
4m? (more generally, s +t +u = Z?:l m?). In CM, s = 4E% t = —2p?(1 — cos®), and
u = —2p?(1 + cos ).

e Yukawa potential. Indeed, the first term in e.g. the above N + N scattering ampli-
tude gives, upon using (p; — p})? — u? = —(|p1 — p}|* + 1?), and the Born approximation
in NRQM, Anxp = —i [ d?’Fe_i(ﬁ'_ﬁ)U(F'), the attractive Yukawa potential
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(The 1/(2m)? is because we normalized the relativistic states with the extra factor of
2wy, ~ 2m as compared with standard nonrelativistic normalization.) This gives Yukawa’s

explanation of the attraction between nucleons, from meson exchange.



