
10/12 Lecture outline

? Reading: Luke, chapter 5

• Last time: left off discussing the interaction picture: writing H = H0 +Hint, in this

picture we use H0 to time evolve the operators, and Hint to time evolve the states:

i
d

dt
O(t) = [O, H0], i

d

dt
|ψ(t)〉 = Hint|ψ(t)〉.

For example, we’ll take H0 to be the free Hamilton of KG fields, with only the mass

terms included in the potential. Again, this is free because the EOM are linear, and we can

solve for φ(x) by superposition. As before, upon quantization, the fields become superpo-

sitions of creation and annihilation operators. The states are all the various multiparticle

states, coming from acting with the creation operators on the vacuum.

• Simple example of interacting theory:

L = 1
2 (∂φ2 − µ2φ2) + (∂ψ†∂ψ −m2ψ†ψ) − gφψψ†.

Toy model for interacting nucleons and mesons. Treat last term as a perturbation.

• Dyson’s formula. Compute scattering S-matrices. Consider asymptotic in and out

states, with the interaction turned off. Time evolve, with the interaction smoothly turned

on and off in the middle.

|ψ(t)〉 = Te−i
∫

d4xHI |i〉.

Derive it by solving i d
dt
|ψ(t)〉 = HI(t)|ψ(t)〉 iteratively:

|ψ(t)〉 = |i〉 + (−i)
∫ t

−∞

dt1HI(t1)|ψ(t1)〉

|ψ(t1)〉 = |i〉 + (−i)
∫ t1

−∞

dt2HI(t2)|ψ(t2)〉

etc where t1 > t2, and then symmetrize in t1 and t2 etc., which is what the T time ordering

does.

Now use Wick’s theorem:

T (φ1 . . . φn) =: φ1 . . . φn : +
∑

contractions

: φ1 . . . φn :
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to get rid of the time ordered products. Thereby compute probability amplitude for a

given process

〈f |(S − 1)|i〉 = iAfi(2π)4δ(4)(pf − pi).

• Look at some examples, and connect with Feynman diagrams. As a first, simple

example consider the above theory, withHint =
∫
d3xgφψ†ψ. Use φ ∼ a+a† for “mesons,”

ψ ∼ b + c†, and ψ† ∼ b† + c. We’ll say that b annihilates a nucleon N and c† creates an

anti-nucleon N̄ . Conservation law, conserved charge Q = Nb −Nc.

Example: meson decay. |i〉 = a†(p)|0〉, |f〉 = b†(q1)c
†(q2)|0〉. Compute 〈f |S|i〉 =

−igδ4(p− q1 − q2) to O(g).

Now consider N +N → N +N , to O(g2). The initial and final states are

|i〉 = b†(p1)b
†(p2)|0〉, 〈f | = 〈0|b(p′1)b(p′2).

The term that contributes to scattering at O(g2) is

T
(−ig)2

2!

∫
d4x1d

4x2φ(x1)ψ
†(x1)ψ(x1)φ(x2)ψ

†(x2)ψ(x2).

The term that contributes to S − 1 thus involves

〈p′1p′2| : ψ†(x1)ψ(x1)ψ
†(x2)ψ(x2) : |p1p2〉 = 〈p′1p′2| : ψ†(x1)ψ

†(x2)|0〉〈0|ψ(x1)ψ(x2)|p1, p2〉.

=
(
ei(p′

1
x1+p′

2
x2) + ei(p′

1
x2+p′

2
x1)

)(
e−i(p1x1+p2x2) + e−i(p1x2+p2x1)

)
.

The amplitude involves this times DF (x1 − x2) (from the contraction), with the prefactor

and integrals as above. The final result is

i(−ig)2
[

1

(p1 − p′1)
2 − µ2

+
1

(p1 − p′2)
2 − µ2

]
(2π)4δ(4)(p1 + p2 − p′1 − p′2).

Explicitly, in the CM frame, p1 = (
√
p2 +m2, eê) and p2 = (

√
p2 +m2,−pê), p′1 =

(
√
p2 +m2, pê′), p′2 = (

√
p2 +m2,−pê′), where ê · ê′ = cos θ, and get

A = g2

(
1

2p2(1 − cos θ) + µ2
+

1

2p2(1 + cos θ) + µ2

)
.

The scattering by φ exchange leads to an attractive Yukawa potential. Indeed, the

first term in the above amplitude gives, upon using (p1 − p′1)
2 − µ2 = |~p1 + ~p′1|2 + µ2, and
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the Born approximation in NRQM, ANR = −i
∫
d3~re−i(~p′−~p)U(~r), the attractive Yukawa

potential

U(r) =

∫
d3p

(2π)3
−g2ei~q·~r

|~q|2 + µ2
= − g2

4πr
e−µr.

This gives Yukawa’s explanation of the attraction between nucleons, from meson exchange.

• Feynman diagrams. Each vertex gets (−ig)(2π)4δ4(ptotal in), each internal line

gets
∫

d4k
(2π)4DF (k2), where DF is the propagator, e.g. DF (k2) = i

k2−m2+iε
. Result is

〈f |(S − 1)|i〉, so divide by (2π)4δ4(pF − pI) to get iAfi.

If the diagram has no loops, the momentum conserving delta functions fix all internal

momenta in terms of the external ones. When the diagram has L 6= 0 loops, the procedure

above yields integrals over the internal momenta of the loops. These integrals require

renormalization, which we’ll discuss later (next quarter), so for now we’ll just consider

“tree-level” contributions, associated with diagrams without loops.

• More examples:

(1) N(p1) + N̄(p2) → N(p′1) + N̄(p′2) has

iA = (−ig)2
(

i

(p1 − p′1) − µ2
+

i

(p1 + p2) − µ2

)
.

(2) N(p1) + N̄(p2) → φ(p′1)φ(p′2) has

iA = (−ig)2
(

i

(p1 − p′1) −m2
+

i

(p1 + p2) −m2

)
.

(3) N(p1) + φ(p2) → N(p′1) + φ(p′2) has

iA = (−ig)2
(

i

(p1 − p′2) −m2
+

i

(p1 + p2) −m2

)
.

• Phase space factors. Put the system in a box of volume V . The momenta are

quantized and, as usual, there are V d3~k/(2π)3 states with ~k in the range d3~k. Also,

normalizing φ and a(k) and a†(k) yields

〈f |(S − 1)|i〉V T = iAV T
fi δ

4(pF − pI)
∏

f

1√
2ωkV

∏

i

1√
2ωkV

.

Squaring, get that the probability per unit time is

|Afi|2V D
∏

i

1

2EiV
,

where

D = (2π)4δ4(pF − pI)
∏

f

d3pf

(2π)32Ef

.

Differential decay probability per unit time: dΓ = 1
2M

|Afi|2D.
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