
10/7 Lecture outline

? Reading: Luke, chapters 3 and 4. Maybe a bit of chapter 5, if time.

• Continue with green’s functions. Last time: L = 1
2∂φ

2 − 1
2m

2φ2 − ρφ, where ρ is a

classical source. Solve by φ = φ0 + i
∫
d4yD(x− y)φ(y), where

(∂2
x +m2)D(x− y) = −iδ4(x− y),

which we can use to solve (∂2
x +m2)φ(x) = ρ(x), via φ(x) = φ0(x) + i

∫
d4yD(x− y)ρ(y),

where φ0 is a solution of the homogeneous KG equation. Get

D?(x− y) =

∫
d4k

(2π)4
i

k2 −m2
e−ik(x−y).

The ? is because we need to specify about how the poles are handled. Consider the k0

integral in the complex plane. There are poles at k0 = ±ωk, where ωk ≡ +
√
~k2 +m2.

There are choices about whether the contour goes above or below the poles. Going above

both poles gives the retarded green’s function, DR(x − y) which vanishes for x0 < y0.

Considering x0 > y0, get that

DR(x− y) = θ(x0 − y0)

∫
d3k

(2π)32ωk

(e−ik(x−y) − eik(x−y))

≡ θ(x0 − y0)(D(x− y) −D(y − x)) = θ(x0 − y0)〈[φ(x), φ(y)]〉,

where

D(x− y) =

∫
d4k

(2π)4
i

k2 −m2
e−ik(x−y).

This is reasonable: then the ρ(y) source only affects φ(x) in the future.

Going below both poles gives the advanced propagator, which vanishes for y0 < x0.

• Feynman propagator. Define

DF (x− y) ≡ 〈Tφ(x)φ(y)〉 =

{
〈φ(x)φ(y)〉 if x0 > y0
〈φ(y)φ(x)〉 if y0 > x0

.

Here T means to time order: order operators so that earliest is on the right, to latest on

left. Object like 〈Tφ(x1) . . . φ(xn)〉 will play a central role in this class. Time ordering

convention can be understood by considering time evolution in 〈tf |ti〉. Evaluate DF (x−y)

by going to momentum space:

DF (x− y) =

∫
d4k

(2π)4
i

k2 −m2 + iε
e−ik(x−y),
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where ε → 0+ enforces that we go below the −ωk pole and above the +ωk pole, i.e. we

get D(x − y) if x0 > y0, and D(y − x) if x0 < y0, as desired from the definition of time

ordering. We’ll see that this ensures causality.

• Define contraction of two fields A(x) and B(y) by T (A(x)B(y))− : A(x)B(y) :.

This is a number, not an operator, e.g. for x0 > y0 the contraction is [A+, B−], and for

y0 > x0 it is [B+, A−]. So can put between vacuum states to get that the contraction is

〈TA(x)B(y)〉. For example, in the KG theory the contraction of φ(x) and φ(y) isDF (x−y).

• Simple example of interacting theory:

L = 1
2 (∂φ2 − µ2φ2) + (∂ψ†∂ψ −m2ψ†ψ) − gφψψ†.

Toy model for interacting nucleons and mesons. Treat last term as a perturbation.

• Dyson’s formula. Compute scattering S-matrices. Consider asymptotic in and out

states, with the interaction turned off. Time evolve, with the interaction smoothly turned

on and off in the middle.

|ψ(t)〉 = Te
−i

∫
d4xHI |i〉.

Motivate it by solving i d
dt
|ψ(t)〉 = HI(t)|ψ(t)〉 iteratively:

|ψ(t)〉 = |i〉 + (−i)

∫ t

−∞

dt1HI(t1)|ψ(t1)〉

|ψ(t1)〉 = |i〉 + (−i)

∫ t1

−∞

dt1HI(t2)|ψ(t2)〉

etc where t1 > t2, and then symmetrize in t1 and t2 etc., which is what the T time ordering

does.

Now use Wick’s theorem:

T (φ1 . . . φn) =: φ1 . . . φn : +
∑

contractions

: φ1 . . . φn :

to get rid of the time ordered products. Thereby compute probability amplitude for a

given process

〈f |(S − 1)|i〉 = iAfi(2π)4δ(4)(pf − pi).

• Look at some examples, and connect with Feynman diagrams. As a first, simple

example consider the above theory, withHint =
∫
d3xgφψ†ψ. Use φ ∼ a+a† for “mesons,”
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ψ ∼ b + c†, and ψ† ∼ b† + c. We’ll say that b annihilates a nucleon N and c† creates an

anti-nucleon N̄ . Conservation law, conserved charge Q = Nb −Nc.

Example: meson decay. |i〉 = a†(p)|0〉, |f〉 = b†(q1)c
†(q2)|0〉. Compute 〈f |S|i〉 =

−igδ4(p− q1 − q2) to O(g).

Now consider N +N → N +N , to O(g2). The initial and final states are

|i〉 = b†(p1)b
†(p2)|0〉, 〈f | = 〈0|b(p′1)b(p

′
2).

The term that contributes to scattering at O(g2) is

T
(−ig)2

2!

∫
d4x1d

4x2φ(x1)ψ
†(x1)ψ(x1)φ(x2)ψ

†(x2)ψ(x2).

The term that contributes to S − 1 thus involves

〈p′1p
′
2| : ψ†(x1)ψ(x1)ψ

†(x2)ψ(x2) : |p1p2〉 = 〈p′1p
′
2| : ψ†(x1)ψ

†(x2)|0〉〈0|ψ(x1)ψ(x2)|p1, p2〉.

=
(
ei(p′

1
x1+p′

2
x2) + ei(p′

1
x2+p′

2
x1)

)(
e−i(p1x1+p2x2) + e−i(p1x2+p2x1)

)
.

The amplitude involves this times DF (x1 − x2) (from the contraction), with the prefactor

and integrals as above. The final result is

i(−ig)2
[

1

(p1 − p′1)
2 − µ2

+
1

(p1 − p′2)
2 − µ2

]
(2π)4δ(4)(p1 + p2 − p′1p

′
2).

Explicitly, in the CM frame, p1 = (
√
p2 +m2, eê) and p2 = (

√
p2 +m2,−pê), p′1 =

(
√
p2 +m2, pê′), p′2 = (

√
p2 +m2,−pê′), where ê · ê′ = cos θ, and get

A = g2

(
1

2p2(1 − cos θ) + µ2
+

1

2p2(1 + cos θ) + µ2

)
.

The scattering by φ exchange leads to an attractive Yukawa potential. Indeed, the

first term in the above amplitude gives, upon using (p1 − p′1)
2 − µ2 = |~p1 + ~p′1|

2 + µ2, and

the Born approximation in NRQM, ANR = −i
∫
d3~re−i(~p′−~p)U(~r), the attractive Yukawa

potential

U(r) =

∫
d3p

(2π)3
−g2ei~q·~r

|~q|2 + µ2
= −

g2

4πr
e−µr.

This gives Yukawa’s explanation of the attraction between nucleons, from meson exchange.

• Feynman diagrams. Each vertex gets (−ig)(2π)4δ4(ptotal in), each internal line gets
∫

d4k
(2π)4

DF (k2). Result is 〈f |(S − 1)|i〉.
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