10/7 Lecture outline
* Reading: Luke, chapters 3 and 4. Maybe a bit of chapter 5, if time.

e Continue with green’s functions. Last time: £ = %Bqﬁz — %ngbQ — p¢, where p is a

classical source. Solve by ¢ = ¢o +i [ d*yD(z — y)d(y), where
(02 +m®)D(z —y) = —id" (z — y),

which we can use to solve (02 + m?)p(z) = p(x), via ¢(z) = ¢o(x) +i [ d*yD(z — y)p(y),

where ¢ is a solution of the homogeneous KG equation. Get

d4k i —ik(x—
Do =) = [ e .

The ? is because we need to specify about how the poles are handled. Consider the kg
integral in the complex plane. There are poles at kg = Fwy, where wp = +V k2 4+ m2.
There are choices about whether the contour goes above or below the poles. Going above
both poles gives the retarded green’s function, Dgr(x — y) which vanishes for zg < yo.

Considering xg > yo, get that

dsk —tk(z— ik(x—
DR(x—y):9(xo—yo)/m(e Re—y) _ gth(@—y))

= 9(330 — yo)(D(QZ — y) - D(y - l’)) = 9(370 - y0)<[¢>(33), ¢(y)]>v

d4k v —ik(x—
D(x_y):/(Qﬂ')‘le—er (@),

where

This is reasonable: then the p(y) source only affects ¢(x) in the future.
Going below both poles gives the advanced propagator, which vanishes for yo < zg.

e Feynman propagator. Define

(¢(x)o(y)) if 20 > yo
(@(y)o(x)) ifyo > o’

Here T' means to time order: order operators so that earliest is on the right, to latest on

Dr( — y) = (To()d(y)) = {

left. Object like (T'¢(x1)...¢(x,)) will play a central role in this class. Time ordering
convention can be understood by considering time evolution in (¢¢|t;). Evaluate Dp(x —v)
by going to momentum space:

d4k v —ik(x—
Dr(z=y) = / (2m)4 k2 —m? + ies o,
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where € — 07 enforces that we go below the —w;, pole and above the 4wy, pole, i.e. we
get D(x —y) if x¢g > yo, and D(y — x) if ¢ < yo, as desired from the definition of time
ordering. We’ll see that this ensures causality.

e Define contraction of two fields A(x) and B(y) by T(A(z)B(y))— : A(z)B(y) :.
This is a number, not an operator, e.g. for z° > y° the contraction is [A*, B~], and for
¥ > 2% it is [BT, A7]. So can put between vacuum states to get that the contraction is
(T'A(x)B(y)). For example, in the KG theory the contraction of ¢(z) and ¢(y) is Dp(x—y).

e Simple example of interacting theory:
L= 3(36" = p*¢”) + (9019 — m*PpT) — gppT.

Toy model for interacting nucleons and mesons. Treat last term as a perturbation.

e Dyson’s formula. Compute scattering S-matrices. Consider asymptotic in and out
states, with the interaction turned off. Time evolve, with the interaction smoothly turned
on and off in the middle.

(1)) = Te [ o)y,

Motivate it by solving i%hb(t)) = Hy(t)|[(t)) iteratively:

[¥(8)) = li) + (—i)/ dtyHy(t1)[3(t))

— o0

t1

p(t)) = [i) + (i) / dty H (t)|(22))

—o0
etc where t; > t9, and then symmetrize in ¢; and t5 etc., which is what the 7" time ordering
does.

Now use Wick’s theorem:
T(1.. On) =201 it > h1...¢n:
contractions

to get rid of the time ordered products. Thereby compute probability amplitude for a

given process
(fI(S = D)]i) = iAp(2m) '8 (ps — pi).

e Look at some examples, and connect with Feynman diagrams. As a first, simple

example consider the above theory, with H;,,; = [ drgpptip. Use ¢ ~ a+al for “mesons,”
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i~ b+ct, and T ~ b + ¢. We’ll say that b annihilates a nucleon N and ¢ creates an
anti-nucleon N. Conservation law, conserved charge Q = N, — N,.

Example: meson decay. |i) = af(p)|0), |f) = bT(q1)cT(g2)|0). Compute (f|S|i) =
—igd*(p — q1 — q2) to O(g).

Now consider N + N — N + N, to O(g?). The initial and final states are

[i) = b ()b (p2)[0), (] = (O[b(P)b(PY)-

The term that contributes to scattering at O(g?) is

T(—ig)2
21

/d4931d4932¢(931)w(931)¢(931>¢(932>¢T(372)¢(1’2)-

The term that contributes to S — 1 thus involves

(0ol = 0T (1) ()T (w2) v (x2) « [p1p2) = (Piph] = ¥ (1) (22) 0) (01 (21) b (2) p1, p2).-

_ <ei(p1m1+p’2m2) + ei(p'lmz—I—p'zml)) <e—i(p1m1+p2w2) + e—i(plwz—I—pzml)) )

The amplitude involves this times Dp(x; — x2) (from the contraction), with the prefactor

and integrals as above. The final result is
i(—ig)” [ /1 52" /1 2 2} (2m)*6™ (p1 + p2 — Piph).
(1 —p1)? = (pr—py)* —p

Explicitly, in the CM frame, p; = (y/p?+ m?2,ee) and py = (v/p> +m?,—pe), p} =
(V/p? + m?2,pe’), py = (\/p?> + m?, —pe’), where € - € = cosf, and get

A=g? ! + !
— 9 2p%(1 — cos ) + u2 ~ 2p2(1+cos) +pu? )

The scattering by ¢ exchange leads to an attractive Yukawa potential. Indeed, the
first term in the above amplitude gives, upon using (p; — p})? — p? = |p1 + p1|* + ©?, and
the Born approximation in NRQM, Axgr = —1i fd3Fe_i(ﬂ_ﬁ)U(F), the attractive Yukawa

potential o
R R L
(27)3 |q1? + p? 4y '

This gives Yukawa’s explanation of the attraction between nucleons, from meson exchange.

e Feynman diagrams. Each vertex gets (—ig)(27)*5* (ptotar in ), €ach internal line gets
| & Dp(k?). Result is (f|(S - 1)]3).



