
10/5 Lecture outline

? Reading: Luke, chapters 3 and 4. Maybe a bit of chapter 5, if time.

• Aside on symmetries of L and Noether’s theorem. If a variation δφa changes

δL = ∂µF
µ, then it’s a symmetry of the action and there is a conserved current:

jµ = ∂L
∂(∂µφa)δφa − Fµ.

Example: xµ → xµ + εµ, δφa = εν∂νφa, δL = εν∂νL (assuming no explicit x de-

pendence). Get Tµν = ∂L
∂∂µφa

∂νφa − gµνL. Stress energy tensor. Conserved charge is

Pµ =
∫

d3~xTµ0.

Another example: Λµ
ν = δµ

ν +ωµ
ν , leads to conservedMµρσ = xµTρσ−xσTρµ. Conserved

charge is Mρσ =
∫

d3xM0ρσ. Conserved angular momentum.

Another example: L = ∂µψ
†∂µψ − µ2ψ†ψ, has symmetry under ψ → eiαψ. Q =

(HW).

• Continue with quantization of the KG field theory example.

[φa(~x, t),Πb(~y, t)] = iδabδ
3(~x− ~y) (Equal time commutators).

Write

φ(x) =

∫

d3k

(2π)3(2ω(k))
[a(k)e−ikx + a†(k)eikx].

Then canonical quantization implies that

[a(~k), a†(~k′)] = (2π)3(2ω)δ3(~k − ~k′),

creation and annihilation operators. The quantum field is a superposition of creation and

annihilation operators. Note also that

H = 1
2

∫

d3k

(2π)2(2ω)
ω(a(~k)a†(~k) + a†(~k)a(~k)).

Need to normal order the first term. Define : AB : for operators A and B to mean that

the terms are arranged so that the annihilation operators are on the right, so annihilates

the vacuum.

• Recall [φ(x), φ(y)] = D(x− y) −D(y − x), where

〈0|φ(x)φ(y)|0〉 = D(x− y) ≡

∫

d3k

(2π)32ω(k)
e−ik(x−y).
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For spacelike separation, (x−y)2 = −r2, get D(x−y) = m
2π2r

K1(mr). AlthoughD(x−y) ∼

exp(−m|~x−~y|) is non-vanishing outside the forward light cone, the above difference is not.

Good.

• Get more interesting theories by adding interactions, e.g. V (φ) = 1
2m

2φ2 + λφ4,

treat 2nd term as a perturbation.

• Consider green’s functions for the KG equation,

(∂2
x +m2)D(x− y) = −iδ4(x− y),

which we can use to solve (∂2
x +m2)φ(x) = ρ(x), via φ(x) = φ0(x) + i

∫

d4yD(x− y)ρ(y),

where φ0 is a solution of the homogeneous KG equation. Get

D(x− y) =

∫

d4k

(2π)4
i

k2 −m2
e−ik(x−y).

Consider the k0 integral in the complex plane. There are poles at k0 = ±ωk, where

ωk ≡ +
√

~k2 +m2. There are choices about whether the contour goes above or below

the poles. Going above both poles gives the retarded green’s function, DR(x − y) which

vanishes for x0 < y0. For x0 > y0, note that

DR =

∫

d3k

(2π)32ωk

(e−ik(x−y) − eik(x−y)) ≡ D(x− y) −D(y − x) = 〈[φ(x), φ(y)]〉.

Going below both poles gives the advanced propagator, which vanishes for y0 < x0.

• Feynman propagator. Define

DF (x− y) ≡ 〈Tφ(x)φ(y)〉 =

{

〈φ(x)φ(y)〉 if x0 > y0
〈φ(y)φ(x)〉 if y0 > x0

.

Here T means to time order: order operators so that earliest is on the right, to latest on

left. Object like 〈Tφ(x1) . . . φ(xn)〉 will play a central role in this class. Time ordering

convention can be understood by considering time evolution in 〈tf |ti〉. Evaluate DF (x−y)

by going to momentum space:

DF (x− y) =

∫

d4k

(2π)4
i

k2 −m2 + iε
e−ik(x−y),

where ε → 0+ enforces that we go below the −ωk pole and above the +ωk pole, i.e. we

get D(x − y) if x0 > y0, and D(y − x) if x0 < y0, as desired from the definition of time

ordering. This ensures causality.
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• Define contraction of two fields A(x) and B(y) by T (A(x)B(y))− : A(x)B(y) :. This

is a number, not an operator, e.g. for x0 > y0 the contraction is [A+, B−]. So can put

between vacuum states to get that the contraction is 〈TA(x)B(y)〉. For example, in the

KG theory the contraction of φ(x) and φ(y) is DF (x− y).

• Simple example of interacting theory:

L = 1
2 (∂φ2 − µ2φ2) + (∂ψ†∂ψ −m2ψ†ψ) − gφψψ†.

Toy model for interacting nucleons and mesons. Treat last term as a perturbation.

• Dyson’s formula. Compute scattering S-matrices. Consider asymptotic in and out

states, with the interaction turned off. Time evolve, with the interaction smoothly turned

on and off in the middle.

|ψ(t)〉 = Te−i
∫

d4xHI |i〉.

Now use Wick’s theorem:

T (φ1 . . . φn) =: φ1 . . . φn : +
∑

contractions

: φ1 . . . φn :

to get rid of the time ordered products. Thereby compute probability amplitude for a

given process

〈f |(S − 1)|i〉 = iAfi(2π)4δ(4)(pf − pi).

• Look at some examples, and connect with Feynman diagrams. As a first, simple

example consider the above theory, withHint =
∫

d3xgφψ†ψ. Use φ ∼ a+a† for “mesons,”

ψ ∼ b+c† for “nucleons,” and ψ† ∼ b†+c for the anti-nucleons. Conservation law, conserved

charge Q = Nc −Nb.

Example: meson decay. |i〉 = a†(p)|0〉, |f〉 = b†(q1)c
†(q2)|0〉. Compute 〈f |S|i〉 =

−igδ4(p− q1 − q2) to O(g).

Now consider ψψ → ψψ, to O(g2). Get

T
−ig)2

2!

∫

d4x1d
4x2φ(x1)ψ

†(x1)ψ(x1)φ(x2)ψ
†(x2)ψ(x2).

The term that contributes to S − 1 involves

〈p′1p
′
2| : ψ†(x1)ψ(x1)ψ

†(x2)ψ(x2) : |p1p2〉 = 〈p′1p
′
2| : ψ†(x1)ψ

†(x2)|0〉〈0|ψ(x1)ψ(x2)|p1, p2〉.

=
(

ei(p′

1
x1+p′

2
x2) + ei(p′

1
x2+p′

2
x1)

)(

e−i(p1x1+p2x2) + e−i(p1x2+p2x1)
)

.

The amplitude involves this times DF (x1 − x2) (from the contraction), with the prefactor

and integrals as above. The final result is

i(−ig)2
[

1

(p1 − p′1)
2 −m2

+
1

(p1 − p′2)
2 −m2

]

(2π)4δ(4)(p1 + p2 − p′1p
′
2).

(Associated with UY uk ∼ e−mr/r.)

We’ll connect with Feynman diagrams.
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