9/30 Lecture outline
* Reading: Luke, chapters 3 and 4. Maybe a bit of chapter 5, if time.

e Last time: classical field theory. E.g. scalars ¢, (¢, @), with S = [ d*xL(¢a,pda).
Then II# = 0L£/0(d,¢.), and E.L. equs 0L/0¢, = 9,I1#. Define II, = II%. H =
[d*x(Tlp, — L) = [ d>zH.

Example: £ = 1(9,¢0"¢ — m?¢?). Klein-Gordon equation, (8% + m?)¢ = 0. Can’t
interpret ¢ as a probability wavefunction because of solutions £ = :I:\/m. But
we’ll see that the KG equation is fine as a field theory. The field has both creation and
annihilation operators, corresponding to the F = + k2 +m2 solutions. Write general

classical solution
3
(@) = [ iy aa B + ke ),

where a.;(k) are classical constants of integration, determined by the initial conditions.
We’ll quantize soon.

Another example: £ = ("¢ — ¢*¢) — Vo* - Vip — mip*yp. Get EOM: i9yyp =
— V2¢p+ma). Looks like S.E., but again don’t want to interpret 1 as a probability amplitude
— here it’s a field, that we can consider quantizing. This example won’t work for v a scalar
field, but we’ll later consider an analogous theory where v is a fermion field, and the
equation is the Dirac equation.

e Canonical quantization: generalize QM by replacing q,(t) — ¢4(t,Z). QM is like

QFT in zero spatial dimensions, with the field playing role of position before:
(o (Z, 1), T1(7,1)] = i0,00°(Z — )  (Equal time commutators).

e Consider the KG equation in 0 + 1 dimensions, i.e. the SHO: L = %qf)z — Lw?a?,
p=0L/d¢ = ¢. Classical EOM solved by x, = ae~ ™! +a*e™’. Now quantize: [z, p] = ik,
[a,a’] = 1, H = w(aa + 1). In the Heisenberg picture, T = /5 (ae~ ! + ale™?);
p =& =1iy/%(ae™! —ale ™",

e Now quantize the KG field theory in 3 + 1 dimensions. Write

3
$(z) = / m[am—“ﬂ T al (k)ete].

Then canonical quantization implies that

(a(k), al ()] = (2m)%(2w)8° (k — &),



creation and annihilation operators. The quantum field is a superposition of creation and

annihilation operators. Note also that

L 7(13]{ w k) + at (k)a(k
1 =4 [ Sl () + o (Ra(d).

Need to normal order the first term. Define : AB : for operators A and B to mean that
the terms are arranged so that the annihilation operators are on the right, so annihilates

the vacuum.

e Causality? Compute [¢(z), ¢(y)] = D(x —y) — D(y — ), where

3
(0/6()$(y)[0) = D(x —y) = / mu)

Note that the commutator is a c-number, not an operator. For spacelike separation,
(x —y)* = —r?, get D(z —y) = 5%-Ki(mr). Although D(z — y) ~ exp(—m|Z — ¢]) is
non-vanishing outside the forward light cone, the above difference is not. Good.

e Get more interesting theories by adding interactions, e.g. V(¢) = %mquz + Ao,
treat 2nd term as a perturbation.

e Symmetries of £ and Noether’s theorem. If a variation d¢, changes 0L = 0,F*",

then it’s a symmetry of the action and there is a conserved current: j* = a1 8 ¢> )5gba
Example: at — xt + e, d¢po = €"0,¢pq, 0L = €”0,L (assuming no explicit x de-
pendence). Get T, = agﬁd) Ov®a — gu L. Stress energy tensor. Conserved charge is

P, = [d*ZT,,.
Another example: A% = 64 +wk, leads to conserved M, ,» = ©,T,s —x51),. Conserved
charge is M, = f d?’xMopg. Conserved angular momentum.

e Consider green’s functions for the KG equation,
(07 +m*)D(x — y) = —is*(x — y),

which we can use to solve (92 + m?)¢(x) = p(x), via ¢(x) = ¢o(x) + i [ d*yD(z — y)p(y),

where ¢q is a solution of the homogeneous KG equation. Get

d4k i —ik(x—
D(x_y):/(%r)‘*l@—m?e (@=y),

Consider the kg integral in the complex plane. There are poles at kg = 4wy, where

wr = +V k2 +m2. There are choices about whether the contour goes above or below

2



the poles. Going above both poles gives the retarded green’s function, Dgr(x — y) which
vanishes for x¢ < yg. For xg > yp, note that
d3k , ,
Dp= | — = (e~ tk(z=y) _ ik(z=v)y = D(z — ) — D(y — ) = '
w= | Gt () = D — y) ~ Dly — 2) = {[6(x), S()
Going below both poles gives the advanced propagator, which vanishes for yy < .
e Feynman propagator. Define
if o >y
Dote ) = Toterony — § (OE@OW) 10>
Here T' means to time order: order operators so that earliest is on the right, to latest on
left. Object like (T'¢p(x1)...¢(z,)) will play a central role in this class. Time ordering
convention can be understood by considering time evolution in (¢¢|t;). Evaluate Dp(x —v)
by going to momentum space:
d*k i ,
D — ) = —ik(z—y)
F@=y) / (2m)* k2 —m? + ic’ ’

where ¢ — 07 enforces that we go below the —w;, pole and above the +wy pole, i.e. we

get D(z —y) if g > yo, and D(y — x) if xg < yo, as desired from the definition of time
ordering. This ensures causality.

e Define contraction of two fields A(x) and B(y) by T(A(x)B(y))— : A(x)B(y) :. This
is a number, not an operator, e.g. for 20 > yO the contraction is [A+, B~]. So can put
between vacuum states to get that the contraction is (T'A(z)B(y)).

e Simple example of interacting theory:
L= 3006 — p*¢*) + (00100 — m*yTy) — gouyl.
Toy model for interacting nucleons and mesons. Treat last term as a perturbation.

e Dyson’s formula. Compute scattering S-matrices. Consider asymptotic in and out
states, with the interaction turned off. Time evolve, with the interaction smoothly turned
on and off in the middle.

. 4
() = Te T,

Now use Wick’s theorem:

T($1.. fn) =101 .Gnit > 1. .¢n:

contractions
to get rid of the time ordered products. Thereby compute probability amplitude for a
given process

(IS = D)li) = iAzi(2m) 6 (ps — i)

Next time, look at some examples, and connect with Feynman diagrams.



