
9/30 Lecture outline

? Reading: Luke, chapters 3 and 4. Maybe a bit of chapter 5, if time.

• Last time: classical field theory. E.g. scalars φa(t, ~x), with S =
∫
d4xL(φa, ∂µφa).

Then Πµ
a = ∂L/∂(∂µφa), and E.L. eqns ∂L/∂φa = ∂µΠµ

a . Define Πa ≡ Π0
a. H =

∫
d3x(Πφ̇a −L) =

∫
d3xH.

Example: L = 1
2(∂µφ∂

µφ −m2φ2). Klein-Gordon equation, (∂2 + m2)φ = 0. Can’t

interpret φ as a probability wavefunction because of solutions E = ±
√
~p2 +m2. But

we’ll see that the KG equation is fine as a field theory. The field has both creation and

annihilation operators, corresponding to the E = ±
√
~k2 +m2 solutions. Write general

classical solution

φcl(x) =

∫
d3k

(2π)3(2ω(k))
[acl(k)e

−ikx + a∗cl(k)e
ikx],

where acl(k) are classical constants of integration, determined by the initial conditions.

We’ll quantize soon.

Another example: L = i
2
(ψ∗ψ̇ − ψ̇∗ψ) − ∇ψ∗ · ∇ψ − mψ∗ψ. Get EOM: i∂tψ =

−∇2φ+mψ. Looks like S.E., but again don’t want to interpret ψ as a probability amplitude

– here it’s a field, that we can consider quantizing. This example won’t work for ψ a scalar

field, but we’ll later consider an analogous theory where ψ is a fermion field, and the

equation is the Dirac equation.

• Canonical quantization: generalize QM by replacing qa(t) → φa(t, ~x). QM is like

QFT in zero spatial dimensions, with the field playing role of position before:

[φa(~x, t),Πb(~y, t)] = iδabδ
3(~x− ~y) (Equal time commutators).

• Consider the KG equation in 0 + 1 dimensions, i.e. the SHO: L = 1
2 φ̇

2 − 1
2ω

2x2,

p = ∂L/∂φ̇ = φ̇. Classical EOM solved by xcl = ae−iωt+a∗eiωt. Now quantize: [x, p] = ih̄,

[a, a†] = 1, H = ω(a†a + 1
2 ). In the Heisenberg picture, x̂ =

√
1
2ω

(ae−iωt + a†eiωt);

p = ẋ = i
√

ω
2 (aeiωt − a†e−iωt).

• Now quantize the KG field theory in 3 + 1 dimensions. Write

φ(x) =

∫
d3k

(2π)3(2ω(k))
[a(k)e−ikx + a†(k)eikx].

Then canonical quantization implies that

[a(~k), a†(~k′)] = (2π)3(2ω)δ3(~k − ~k′),
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creation and annihilation operators. The quantum field is a superposition of creation and

annihilation operators. Note also that

H = 1
2

∫
d3k

(2π)2(2ω)
ω(a(~k)a†(~k) + a†(~k)a(~k)).

Need to normal order the first term. Define : AB : for operators A and B to mean that

the terms are arranged so that the annihilation operators are on the right, so annihilates

the vacuum.

• Causality? Compute [φ(x), φ(y)] = D(x− y) −D(y − x), where

〈0|φ(x)φ(y)|0〉 = D(x− y) ≡

∫
d3k

(2π)32ω(k)
e−ik(x−y).

Note that the commutator is a c-number, not an operator. For spacelike separation,

(x − y)2 = −r2, get D(x − y) = m
2π2r

K1(mr). Although D(x − y) ∼ exp(−m|~x − ~y|) is

non-vanishing outside the forward light cone, the above difference is not. Good.

• Get more interesting theories by adding interactions, e.g. V (φ) = 1
2m

2φ2 + λφ4,

treat 2nd term as a perturbation.

• Symmetries of L and Noether’s theorem. If a variation δφa changes δL = ∂µF
µ,

then it’s a symmetry of the action and there is a conserved current: jµ = ∂L
∂(∂µφa)δφa−F

µ.

Example: xµ → xµ + εµ, δφa = εν∂νφa, δL = εν∂νL (assuming no explicit x de-

pendence). Get Tµν = ∂L
∂∂µφa

∂νφa − gµνL. Stress energy tensor. Conserved charge is

Pµ =
∫
d3~xTµ0.

Another example: Λµ
ν = δµ

ν +ωµ
ν , leads to conservedMµρσ = xµTρσ−xσTρµ. Conserved

charge is Mρσ =
∫
d3xM0ρσ. Conserved angular momentum.

• Consider green’s functions for the KG equation,

(∂2
x +m2)D(x− y) = −iδ4(x− y),

which we can use to solve (∂2
x +m2)φ(x) = ρ(x), via φ(x) = φ0(x) + i

∫
d4yD(x− y)ρ(y),

where φ0 is a solution of the homogeneous KG equation. Get

D(x− y) =

∫
d4k

(2π)4
i

k2 −m2
e−ik(x−y).

Consider the k0 integral in the complex plane. There are poles at k0 = ±ωk, where

ωk ≡ +
√
~k2 +m2. There are choices about whether the contour goes above or below
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the poles. Going above both poles gives the retarded green’s function, DR(x − y) which

vanishes for x0 < y0. For x0 > y0, note that

DR =

∫
d3k

(2π)32ωk

(e−ik(x−y) − eik(x−y)) ≡ D(x− y) −D(y − x) = 〈[φ(x), φ(y)]〉.

Going below both poles gives the advanced propagator, which vanishes for y0 < x0.

• Feynman propagator. Define

DF (x− y) ≡ 〈Tφ(x)φ(y)〉 =

{
〈φ(x)φ(y)〉 if x0 > y0
〈φ(y)φ(x)〉 if y0 > x0

.

Here T means to time order: order operators so that earliest is on the right, to latest on

left. Object like 〈Tφ(x1) . . . φ(xn)〉 will play a central role in this class. Time ordering

convention can be understood by considering time evolution in 〈tf |ti〉. Evaluate DF (x−y)

by going to momentum space:

DF (x− y) =

∫
d4k

(2π)4
i

k2 −m2 + iε
e−ik(x−y),

where ε → 0+ enforces that we go below the −ωk pole and above the +ωk pole, i.e. we

get D(x − y) if x0 > y0, and D(y − x) if x0 < y0, as desired from the definition of time

ordering. This ensures causality.

• Define contraction of two fields A(x) and B(y) by T (A(x)B(y))− : A(x)B(y) :. This

is a number, not an operator, e.g. for x0 > y0 the contraction is [A+, B−]. So can put

between vacuum states to get that the contraction is 〈TA(x)B(y)〉.

• Simple example of interacting theory:

L = 1
2 (∂φ2 − µ2φ2) + (∂ψ†∂ψ −m2ψ†ψ) − gφψψ†.

Toy model for interacting nucleons and mesons. Treat last term as a perturbation.

• Dyson’s formula. Compute scattering S-matrices. Consider asymptotic in and out

states, with the interaction turned off. Time evolve, with the interaction smoothly turned

on and off in the middle.

|ψ(t)〉 = Te−i
∫

d4xHI |i〉.

Now use Wick’s theorem:

T (φ1 . . . φn) =: φ1 . . . φn : +
∑

contractions

: φ1 . . . φn :

to get rid of the time ordered products. Thereby compute probability amplitude for a

given process

〈f |(S − 1)|i〉 = iAfi(2π)4δ(4)(pf − pi).

Next time, look at some examples, and connect with Feynman diagrams.
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