11/11 Lecture outline
* Reading: Luke chapter 9. Tong chapter 4

e Aside: consider o# = (1,0"), where each entry is a 2 x 2 matrix. Now form X =
rHo™u. Lorentz transformations act as X — X’ = DX D' where D € SL(2,C). Here
D = e79€0/2 for g rotation by 6 around the € axis, and Dy = e¥7¢#/2 for a boost along
the € axis, where v = tanh ¢. This illustrates the statement of last lecture, that the vector
representation of the Lorentz group is D(1/2,1/2).

e Last time: wy, with D = e~ %9¢/2 for a rotation by # around the € axis, and
Dy = et7¢9/2 for a boost along the € axis, where v = tanh ¢. These 2-component Weyl
spinor representations individually play an important role in non-parity invariant theories,
like the weak interactions. Parity ((t, ) — (¢, —Z)) exchances them. So, in parity invariant

theories, like QED, they are combined into a 4-component Dirac spinor, (1/2,0)4(0,1/2):

wz(Zj).

The 4-component spinor rep starts with the clifford algebra {v*,~7"} = 2n*¥1, e.g.
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There are other choices of reps of the clifford algebra.

SHY = %['y“,’y”] = %'y“’y” — %77“”, satisfies the Lorentz Lie algebra relation. Under a

ok

rotation, S¥ = —5€ijk ( 0

Uok ), so taking €);; = —eijkgok get under rotations

Under boosts, £, 0 = ¢;,
[ ePF/2 0
S[A] = ( 0 e_d',’.gf/z .

This exhibits the 2-component reps that we described above.

Under Lorentz transformations, spinors transform as ¢(x) — S[A]y(A~1z), and
YT(z) — »T(A~1z2)S[A]T. Note that S[A]TS[A] # 1, but S[A]" = 4°S[A]"1vp. So de-
fine ¥(x) = ¥TyY and note that 1) transforms as a scalar, and y*1) transforms as a

Lorentz 4-vector.
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For 2-component spinors, u o*u_ and ul ", transform like vectors, where o# =
3 + + 3

(1,0%) and * = (1, —0*). Here are two Lorentz scalars (exchanged under parity): ulqu.

v = —iv%914243, anticommutes with all other 4* and (y°)2 = 1. In our above
. . 1 ..
representation of the gamma matrices, v5 = ( 0 _01 ), so Py = (1 ++°) are projection

operators, projecting on to u4.

e The Dirac action:

5 / B2 (2) (i7" 8, — m)b(x)
= /d4x(u1ia“8uu+ +ul ighdu_ — m(uﬂ_u_ +ul ut)).

The last line exhibits something interesting: if there is a mass term, it is necessary to
have both u4 and u_ (and then there’s parity invariance). But if m = 0, we can consider
P non-invariant theories with only u or only u_. More about this soon. Also, the action
has a global U(1) symmetry under ¢ — e*®1), whose Noether conserved charge is fermion
number. If m = 0, this symmetry is enhanced to U(1)4 x U(1)_, acting separately on
uy4 and u_. Neat point: this enhanced symmetry helps explains why the known fermion
masses are small.

Vary w.r.t. ¢ to get the Dirac equation:
(iv"0, —m)y = 0.

Dirac wrote this down by thinking about how to make sense of the square-root of the
operator appearing in the KG equation, /0,0" + m?; indeed, —(iy*0,,+m)(iy* 0, —m) =
0% + m?2.

The conjugate momentum to ¢ is

Ho_
’/T’l/J_

So 1 has 4 (rather than 8) real d.o.f..



