
11/11 Lecture outline

? Reading: Luke chapter 9. Tong chapter 4

• Aside: consider σµ = (1, σi), where each entry is a 2 × 2 matrix. Now form X =

xµσmu. Lorentz transformations act as X → X ′ = DXD†, where D ∈ SL(2, C). Here

D = e−i~σ·êθ/2 for a rotation by θ around the ê axis, and D± = e±~σ·êφ/2 for a boost along

the ê axis, where v = tanhφ. This illustrates the statement of last lecture, that the vector

representation of the Lorentz group is D(1/2, 1/2).

• Last time: u±, with D = e−i~σ·êθ/2 for a rotation by θ around the ê axis, and

D± = e±~σ·êφ/2 for a boost along the ê axis, where v = tanhφ. These 2-component Weyl

spinor representations individually play an important role in non-parity invariant theories,

like the weak interactions. Parity ((t, ~x) → (t,−~x)) exchances them. So, in parity invariant

theories, like QED, they are combined into a 4-component Dirac spinor, (1/2, 0)+(0, 1/2):

ψ =

(
u+

u−

)
.

The 4-component spinor rep starts with the clifford algebra {γµ, γν} = 2ηµν1, e.g.

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
.

There are other choices of reps of the clifford algebra.

Sµν = 1
4
[γµ, γν] = 1

2
γµγν − 1

2
ηµν , satisfies the Lorentz Lie algebra relation. Under a

rotation, Sij = − i
2 εijk

(
σk 0
0 σk

)
, so taking Ωij = −εijkϕ

k get under rotations

S[~ϕ] =

(
ei~ϕ·~σ/2 0

0 ei~ϕ·~σ/2

)
.

Under boosts, Ωi,0 = φi,

S[Λ] =

(
e
~φ·~σ/2 0
0 e−

~φ·~σ/2

)
.

This exhibits the 2-component reps that we described above.

Under Lorentz transformations, spinors transform as ψ(x) → S[Λ]ψ(Λ−1x), and

ψ†(x) → ψ†(Λ−1x)S[Λ]†. Note that S[Λ]†S[Λ] 6= 1, but S[Λ]† = γ0S[Λ]−1γ0. So de-

fine ψ̄(x) ≡ ψ†γ0 and note that ψ̄ψ transforms as a scalar, and ψ̄γµψ transforms as a

Lorentz 4-vector.

1



For 2-component spinors, u†−σ
µu− and u†+σ̄

µu+ transform like vectors, where σµ =

(1, σi) and σ̄µ = (1,−σi). Here are two Lorentz scalars (exchanged under parity): u†±u∓.

γ5 ≡ −iγ0γ1γ2γ3, anticommutes with all other γµ and (γ5)2 = 1. In our above

representation of the gamma matrices, γ5 =

(
1 0
0 −1

)
, so P± = 1

2(1 ± γ5) are projection

operators, projecting on to u±.

• The Dirac action:

S =

∫
d4xψ̄(x)(iγµ∂µ −m)ψ(x)

=

∫
d4x(u†+iσ

µ∂µu+ + u†−iσ̄
µ∂µu− −m(u†+u− + u†−u

+)).

The last line exhibits something interesting: if there is a mass term, it is necessary to

have both u+ and u− (and then there’s parity invariance). But if m = 0, we can consider

P non-invariant theories with only u+ or only u−. More about this soon. Also, the action

has a global U(1) symmetry under ψ → eiαψ, whose Noether conserved charge is fermion

number. If m = 0, this symmetry is enhanced to U(1)+ × U(1)−, acting separately on

u+ and u−. Neat point: this enhanced symmetry helps explains why the known fermion

masses are small.

Vary w.r.t. ψ̄ to get the Dirac equation:

(iγµ∂µ −m)ψ = 0.

Dirac wrote this down by thinking about how to make sense of the square-root of the

operator appearing in the KG equation,
√
∂µ∂µ +m2; indeed, −(iγµ∂µ+m)(iγµ∂µ−m) =

∂2 +m2.

The conjugate momentum to ψ is

πµψ =
∂L

∂(∂µψ)
= iψ̄γµ.

So ψ has 4 (rather than 8) real d.o.f..
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