11/11 Lecture outline

\star Reading: Luke chapter 9. Tong chapter 4

• Aside: consider $\sigma^{\mu} = (1, \sigma^{i})$, where each entry is a 2 × 2 matrix. Now form X = $x^{\mu} \sigma^{m} u$. Lorentz transformations act as $X \to X' = D X D^{\dagger}$, where $D \in SL(2, C)$. Here $D = e^{-i\vec{\sigma}\cdot\hat{e}\theta/2}$ for a rotation by θ around the \hat{e} axis, and $D_{\pm} = e^{\pm \vec{\sigma}\cdot\hat{e}\phi/2}$ for a boost along the \hat{e} axis, where $v = \tanh \phi$. This illustrates the statement of last lecture, that the vector representation of the Lorentz group is $D(1/2, 1/2)$.

• Last time: u_{\pm} , with $D = e^{-i\vec{\sigma} \cdot \hat{e}\theta/2}$ for a rotation by θ around the \hat{e} axis, and $D_{\pm} = e^{\pm \vec{\sigma} \cdot \hat{e} \phi/2}$ for a boost along the \hat{e} axis, where $v = \tanh \phi$. These 2-component Weyl spinor representations individually play an important role in non-parity invariant theories, like the weak interactions. Parity $((t,\vec{x}) \rightarrow (t, -\vec{x}))$ exchances them. So, in parity invariant theories, like QED, they are combined into a 4-component Dirac spinor, $(1/2, 0) + (0, 1/2)$:

$$
\psi = \left(\begin{array}{c} u_+ \\ u_- \end{array} \right).
$$

The 4-component spinor rep starts with the clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbf{1}$, e.g.

$$
\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}.
$$

There are other choices of reps of the clifford algebra.

 $S^{\mu\nu}=\frac{1}{4}$ $\frac{1}{4}[\gamma^{\mu},\gamma^{\nu}]=\frac{1}{2}\gamma^{\mu}_{\ \ \ \ \gamma^{\nu}-\frac{1}{2}}$ $\frac{1}{2}\eta^{\mu\nu}$, satisfies the Lorentz Lie algebra relation. Under a rotation, $S^{ij} = -\frac{i}{2}$ $\frac{i}{2}\epsilon_{ijk} \begin{pmatrix} \sigma^k & 0 \ 0 & \sigma^k \end{pmatrix}$ $0 \quad \sigma^k$ $\tilde{\setminus}$, so taking $\Omega_{ij} = -\epsilon_{ijk}\varphi^k$ get under rotations

$$
S[\vec{\varphi}] = \begin{pmatrix} e^{i\vec{\varphi}\cdot\vec{\sigma}/2} & 0 \\ 0 & e^{i\vec{\varphi}\cdot\vec{\sigma}/2} \end{pmatrix}.
$$

Under boosts, $\Omega_{i,0} = \phi_i$,

$$
S[\Lambda] = \begin{pmatrix} e^{\vec{\phi} \cdot \vec{\sigma}/2} & 0 \\ 0 & e^{-\vec{\phi} \cdot \vec{\sigma}/2} \end{pmatrix}.
$$

This exhibits the 2-component reps that we described above.

Under Lorentz transformations, spinors transform as $\psi(x) \to S[\Lambda]\psi(\Lambda^{-1}x)$, and $\psi^{\dagger}(x) \rightarrow \psi^{\dagger}(\Lambda^{-1}x)S[\Lambda]^{\dagger}$. Note that $S[\Lambda]^{\dagger}S[\Lambda] \neq 1$, but $S[\Lambda]^{\dagger} = \gamma^{0}S[\Lambda]^{-1}\gamma_{0}$. So define $\bar{\psi}(x) \equiv \psi^{\dagger} \gamma^0$ and note that $\bar{\psi} \psi$ transforms as a scalar, and $\bar{\psi} \gamma^{\mu} \psi$ transforms as a Lorentz 4-vector.

For 2-component spinors, $u^{\dagger}_{-}\sigma^{\mu}u_{-}$ and $u^{\dagger}_{+}\bar{\sigma}^{\mu}u_{+}$ transform like vectors, where σ^{μ} = $(1, \sigma^i)$ and $\bar{\sigma}^{\mu} = (1, -\sigma^i)$. Here are two Lorentz scalars (exchanged under parity): $u^{\dagger}_{\pm} u_{\mp}$. $\gamma^5 \equiv -i\gamma^0\gamma^1\gamma^2\gamma^3$, anticommutes with all other γ^{μ} and $(\gamma^5)^2 = 1$. In our above representation of the gamma matrices, $\gamma_5 =$ $\begin{pmatrix} 1 & 0 \end{pmatrix}$ $0 -1$ $\overline{}$, so $P_{\pm}=\frac{1}{2}$ $\frac{1}{2}(1 \pm \gamma^5)$ are projection operators, projecting on to u_{\pm} .

• The Dirac action:

$$
S = \int d^4x \bar{\psi}(x)(i\gamma^{\mu}\partial_{\mu} - m)\psi(x)
$$

=
$$
\int d^4x (u_+^{\dagger}i\sigma^{\mu}\partial_{\mu}u_+ + u_-^{\dagger}i\bar{\sigma}^{\mu}\partial_{\mu}u_- - m(u_+^{\dagger}u_- + u_-^{\dagger}u^+)).
$$

The last line exhibits something interesting: if there is a mass term, it is necessary to have both u_+ and u_- (and then there's parity invariance). But if $m = 0$, we can consider P non-invariant theories with only u_+ or only u_+ . More about this soon. Also, the action has a global $U(1)$ symmetry under $\psi \to e^{i\alpha}\psi$, whose Noether conserved charge is fermion number. If $m = 0$, this symmetry is enhanced to $U(1)_+ \times U(1)_-$, acting separately on u_{+} and u_{-} . Neat point: this enhanced symmetry helps explains why the known fermion masses are small.

Vary w.r.t. $\bar{\psi}$ to get the Dirac equation:

$$
(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0.
$$

Dirac wrote this down by thinking about how to make sense of the square-root of the operator appearing in the KG equation, $\sqrt{\partial_\mu \partial^\mu + m^2}$; indeed, $-(i\gamma^\mu \partial_\mu + m)(i\gamma^\mu \partial_\mu - m) =$ $\partial^2 + m^2$.

The conjugate momentum to ψ is

$$
\pi^{\mu}_{\psi} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)} = i\bar{\psi}\gamma^{\mu}.
$$

So ψ has 4 (rather than 8) real d.o.f..