
11/9 Lecture outline

⋆ Reading: Luke chapter 9. Tong chapter 4

• On to fermions! Consider more generally Lorentz transformations. Under lorentz

transformations xµ → xµ
′

= Λµνx
ν , scalar fields transform as φ(x) → φ′(x) = φ(Λ−1x).

Vector fields transform as Aµ → ΛµνA
ν(Λ−1x). Generally, φa → D[Λ]abφ

b(Λ−1x), where

D[Λ] is a rep of the Lorentz group, D[Λ1]D[Λ2] = D[Λ1Λ2]. Write D[Λ] = exp( 1

2
ΩµνMµν),

which is a rep if Mνν satisfies the Lie algebra commutation relation [Mρσ,Mµν ] =

ησµMρν ± 3perms, where the perms account for Mµν = −Mνµ. E.g. the fundamen-

tal rep has (Mµν)ρσ = ηµρηνσ − ηµσηνρ.

Write the Lorentz transformation generators in terms rotation, whose generators are

the angular momentum ~J , where Ji = 1

2
ǫijkM

jk, and boosts, with ~K and Ki = M i,0.

They are similar, e.g. boosting along the x axis vs rotation around the x axis:

Λboost =





coshφ sinhφ
sinhφ coshφ

1
1



 Λrotate =





1
1

cos θ − sin θ
sin θ cos θ



 .

So define ~N± ≡ 1

2
( ~J±i ~K). Then the Lorentz algebra becomes simply [N±

i , N
±
k ] = iǫijkN

±
k ,

and [N±, N∓
j ] = 0, i.e. two copies of the familiar rotation commutation relations. The

reps are then labeled by (nL, nR), where nL and nR are non-negative half-integers, like

the angular momentum j. Note that parity exchanges ~N ↔ ~N †, so it exchanges the above

left and right, hence their names. The angular momentum ~J = ~N + ~N †, so j runs from

|nL−nR| to nL+nR The scalar rep is (0, 0), the vector rep is (1/2, 1/2). The basic spinor

reps are (1/2, 0) and (0, 1/2), denoted u±; these are called left and right handed Weyl

spinors. They both have D = e−i~σ·êθ/2 for a rotation by θ around the ê axis, but they

have D± = e±~σ·êφ/2 for a boost along the ê axis, where v = tanhφ. These 2-component

Weyl spinor representations individually play an important role in non-parity invariant

theories, like the weak interactions. Parity ((t, ~x) → (t,−~x)) exchances them. So, in

parity invariant theories, like QED, they are combined into a 4-component Dirac spinor,

(1/2, 0) + (0, 1/2):

ψ =

(
u+

u−

)
.

The 4-component spinor rep starts with the clifford algebra {γµ, γν} = 2ηµν1, e.g.

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
.
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(There are other choices of reps of the clifford algebra.)

Then consider Sµν = 1

4
[γµ, γν] = 1

2
γµγν − 1

2
ηµν , and note that Sµν satisfies the

Lorentz Lie algebra relation. It’s a spinor rep since it is easily verified that ψα → −ψα

under a 2π rotation. Under a rotation, Sij = − i
2
ǫijk

(
σk 0
0 σk

)
, so taking Ωij = −ǫijkϕk

get under rotations

S[~ϕ] =

(
ei~ϕ·~σ/2 0

0 ei~ϕ·~σ/2

)
.

Under boosts, Ωi,0 = χi,

S[Λ] =

(
e~χ·~σ/2 0

0 e−~χ·~σ/2

)
.

This exhibits the 2-component reps that we described above.

Under Lorentz transformations, spinors transform as ψ(x) → S[Λ]ψ(Λ−1x), and

ψ†(x) → ψ†(Λ−1x)S[Λ]†. Note that S[Λ]†S[Λ] 6= 1, but S[Λ]† = γ0S[Λ]−1γ0. So de-

fine ψ̄(x) ≡ ψ†γ0 and note that ψ̄ψ transforms as a scalar, and ψ̄γµψ transforms as a

Lorentz 4-vector.

For 2-component spinors, u†−σ
µ and u†+σ̄

µu+ transform like vectors, where σµ = (1, σi)

and σ̄µ = (1,−σi). Here are two Lorentz scalars (exchanged under parity): u†±u∓.

γ5 ≡ −iγ0γ1γ2γ3, anticommutes with all other γµ and (γ5)2 = 1. In our above

representation of the gamma matrices, γ5 =

(
1 0
0 −1

)
, so P± = 1

2
(1 ± γ5) are projection

operators, projecting on to u±.

• The Dirac action:

S =

∫
d4xψ̄(x)(iγµ∂µ −m)ψ(x).

Vary w.r.t. ψ̄ to get the Dirac equation:

(iγµ∂µ −m)ψ = 0.

Dirac wrote this down by thinking about how to make sense of the square-root of the

operator appearing in the KG equation,
√
∂µ∂µ +m2; indeed, −(iγµ∂µ+m)(iγµ∂µ−m) =

∂2 +m2.

The conjugate momentum to ψ is

πµψ =
∂L

∂(∂µψ)
= iψ̄γµ.

So ψ has 4 (rather than 8) real d.o.f..
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The plane wave solutions of the Dirac equation are

ψ = us(p)e−ipx, ψ = vr(p)eipx,

where

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, vr(p) =

( √
p · σηr

−√
p · σ̄ηr

)
,

where ξ†ξ = η†η = 1, and r, s label two independent basis choices, e.g ξ1 =

(
1
0

)
and

ξ2 =

(
0
1

)
.

The general solution of the classical EOM is a superposition of these plane waves.

We’ll form these, and then quantize.
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