11/9 Lecture outline
* Reading: Luke chapter 9. Tong chapter 4

e On to fermions! Consider more generally Lorentz transformations. Under lorentz
transformations z# — x# = AFz¥, scalar fields transform as ¢(z) — ¢/(z) = d(A~1x).
Vector fields transform as A* — A#AY(A~'z). Generally, ¢ — D[A]¢¢°(A~ ), where
D[A] is a rep of the Lorentz group, D[A1]D[As] = D[A1As]. Write D[A] = exp(5Q,, M),
which is a rep if MY satisfies the Lie algebra commutation relation [MP7, M| =
n7rMP¥ £+ 3perms, where the perms account for M*” = —M"#. E.g. the fundamen-
tal rep has (MHV)P7 = phPyrT — phonvp,

Write the Lorentz transformation generators in terms rotation, whose generators are
the angular momentum j, where J; = %eijijk, and boosts, with K and K; = MO,
They are similar, e.g. boosting along the z axis vs rotation around the z axis:
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So define N* = %(fﬂ:sz) Then the Lorentz algebra becomes simply [Nii, Nki] = ieijkN,f,
and [N*, N ;F] = 0, i.e. two copies of the familiar rotation commutation relations. The
reps are then labeled by (np,ng), where ny and ng are non-negative half-integers, like
the angular momentum j. Note that parity exchanges N & N T so it exchanges the above
left and right, hence their names. The angular momentum J=N+N . so j runs from
|n, —ngr| to ng, +ng The scalar rep is (0,0), the vector rep is (1/2,1/2). The basic spinor
reps are (1/2,0) and (0,1/2), denoted w4 ; these are called left and right handed Weyl
spinors. They both have D = e~%¢%/2 for a rotation by @ around the € axis, but they
have D4 = e+7¢?/2 for a boost along the € axis, where v = tanh ¢. These 2-component
Weyl spinor representations individually play an important role in non-parity invariant
theories, like the weak interactions. Parity ((¢,Z) — (t,—Z)) exchances them. So, in

parity invariant theories, like QED, they are combined into a 4-component Dirac spinor,
(1/2,0) +(0,1/2):
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The 4-component spinor rep starts with the clifford algebra {v*,~4"} = 2n*¥1, e.g.
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(There are other choices of reps of the clifford algebra.)
Then consider S* = 1[y#,4"] = L4#4” — 1y and note that S*” satisfies the

Lorentz Lie algebra relation. It’s a spinor rep since it is easily verified that ¢ — —y®
k

under a 27 rotation. Under a rotation, S% = —%Gijk <JO U()k ), so taking 2;; = —Ez‘ijOk
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This exhibits the 2-component reps that we described above.

get under rotations

Under boosts, €2; o = xi,

Under Lorentz transformations, spinors transform as ¢(x) — S[A]Y(A~1z), and
Pi(z) — »T(A~1z)S[A]T. Note that S[A]TS[A] # 1, but S[A]T = 7°S[A]"!vp. So de-
fine ¢ (z) = ¥Ty° and note that 17 transforms as a scalar, and "1 transforms as a

Lorentz 4-vector.
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For 2-component spinors, u! o* and ul&“u+ transform like vectors, where o = (1, 0%)

and 6# = (1, —0o"). Here are two Lorentz scalars (exchanged under parity): ulqu.

v® = —ir%91y243, anticommutes with all other v# and (7°)?2 = 1. In our above
representation of the gamma matrices, v5 = ((1) _01 ), so Py = %(1 + ~+°) are projection

operators, projecting on to u.

e The Dirac action:

5= [ dwi@)ira, - myu(a).

Vary w.r.t. ¢ to get the Dirac equation:
(iv*0, —m)y = 0.

Dirac wrote this down by thinking about how to make sense of the square-root of the
operator appearing in the KG equation, /0,0* + m?; indeed, —(iy* 0, +m)(iy* 0, —m) =
0% + m?2.

The conjugate momentum to ¢ is
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So 1 has 4 (rather than 8) real d.o.f..



The plane wave solutions of the Dirac equation are
w — us(p)e—ipm, w — Ur(p)eipm7
where
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where ¢7¢ = ntn = 1, and 7, s label two independent basis choices, e.g &' = (1) and

(0

The general solution of the classical EOM is a superposition of these plane waves.

We'll form these, and then quantize.



