11/2 Lecture outline
* Reading: Tong 3.7, Luke, chapter 8

e Last time: Greens functions.

G (z1,...20) = (UTou(z1) ... o (zn)|),

where ¢ (x) are the full Heisenberg picture fields, using the full Hamiltonian.

Showed that
(0[S]0) ’

and discussed how Greens functions are computed by summing all Feynman diagrams

G (zy...2p) =

without vacuum bubbles.

Next topic: how to go from Green functions é(”)(pl, ..., Dn), computed with external
leg propagators, allowed to be off-shell, to S-matrix elements. E.g.

4
]{72 _ m2 .
(ks, kalS — 1kiko) = ] G kg, —ka, k1 ko),
n=1

where the factors are to amputate the external legs. Consider for example GW (k1, ko, ks, kq)

for 4 external mesons in our meson-nucleon toy model. The lowest order contribution is
at O(g°) and is

(21)2 6@ (ky + ky) (2m)46™ (kg + ks) + 2 permutations.

k= 2+ e k3 — 12 + e
This is the —1 that we subtract in S — 1, and indeed would not contribute to 2 — 2
scattering using the above formula, because it is set to zero by Hizl(k:i —m?2) when the
external momenta are put on shell. To get a non-zero result, need a G® contribution with
4 external propagators, which we get e.g. at O(g*) with an internal nucleon loop.

e Introduce a source for ¢(x), via L = J(x)¢p(z). Then get diagrams where a meson

ends on the source, with Feynman rule iJ(k). At n-th order in J, the contribution to

(0/50) is . .
a/W.../WJ(-]@...J(—kn)G(’”(lﬂ,..-,kn>

Summing these up, we can write a functional of the source

Z[J] = (0[]0)s = (o]Te’ | @),
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Taking functional derivatives of it w.r.t. the source, using %@)J (y) = 6@ (x — y), gives
the Green functions. Use Dyson’s formula for H = Hy+ H;, where Hj is the full interacting
Hamiltonian, and H; = —J(z)¢n(x), where now ¢p is in the Heisenberg picture. Then

Dyson’s formula gives

2] = (T exp(i / d42.J (@) dn ()],

which shows that Z[J] is a generating functional for the Greens functions

. _ o i
G (@ ... x,) = Z[J] IHWZ[J]}J_O.

e Account for bare vs full interacting fields. Let |k) be the physical one-meson state

of the full interacting theory, normalized to (k'|k) = (27)32w,6®) (K’ — k). Then
_ iPx —iPx|)\ _ ik — ikxy1/2
(klo(x)[2) = (ke " ¢(0)e™*[) = e (k[p(0)[2) = ™" Z,".

Now rescale the fields, s.t. (k|¢(z)|Q) = e~***, and the LSZ formula is:

n m m
(q1...qn|S —1]k1 ...k H H bG(”+m)( iy — Qny K1y - km),

where the Green function is for the Heisenberg fields in the full interacting vacuum.

To derive the LSZ formula, consider wave packets, with some profile F(k), and f(z) =

S (%)32% (k)e~ = where we define ko = \/k2+ 2, so f(z) solves the KG equation.
Now define

ol () =i / PEGE,)D0f (7, 1) — (T, )00 (F, 1)),
Note that

i / dhxf(2)(0° + p?)p(x) = / dte! (1)

¢ (t) makes single particle wave packets from the vacuum, (k|¢f(£)|Q) = F(k). Also,
Qo (t)|k) = 0, and (n|of(t)|Q) = “’ggj”nF( )i @on =Pt (] (0)2), where w,, =
/P2 + p2, which has w, < pO for any multiparticle state. So lim;_ 1. (1|7 (£)|Q) =
(v|f) + 0, where the multiparticle states contributions sum to zero using the Riemann-

Lebesgue lemma.



Make separated in states: |f,) = [T ¢/ (t,)|2), and out states { f,n| = (| [T(¢'™)T (tm),

with ¢,, — —oo and t,,, — +00. Then show
(ol = 11f) = [ TLd"00tuCoa) [] @4 fnon)* [T #02 + 2) G ).

Take fi(z) — e~ %% at the end. To show the above, use that for arbitrary ¢(x), and for
KG solution f(z), i [d*zf(x)(0% + m?)d(z) = (limy— _ oo —limy—00 )¢/ (). Show that all
the t — +o00 do the right thing to give the in and out states, thanks to various cancellations,
using limy—. 100 (P[¢7 ()|Q) = (V[ f).



