
9/28 Lecture outline

? Reading for today’s lecture: Luke, chapters 1 and 2; Tong up to section

2.7; Sredniki chapters 1-3.

• Relativistic QM? Issue: particle number can change; can’t have a relativistic single

particle QM. Can’t define ~Xop or |~x〉. In QM, observables, e.g. Lz, aren’t attached to their

location, so can have problems with causality. Want something like [O1(x1), O2(x2)] = 0

for spacelike separations, (x1 − x2)
2 < 0.

• Solution: quantum field theory. Replace particles, e.g. electrons, with fluctuations

of a local field. Agrees with the fact that all electrons are the same. Whether here or on

the other side of the universe, an electron is the same kind of blip of the electron field,

which fills the universe.

• Conventions: h̄ = c = 1, mostly minus metric gµν , e.g. ∂µ = (∂t, ~∇), ∂µ∂
µ ≡ ∂2 =

∂2
t − ∇2, f(x) =

∫
dnk

(2π)n f̃(k)eikx, f̃(k) =
∫
dnxf(x)e−ikx.

• “What goes wrong if we just do the S.E. with Hrel =
√
~p2 +m2?” Let’s see. Start

with |ψ(t = 0)〉 = |~x = 0〉. Compute

〈~x|ψ(t)〉 = 〈~x|e−iHt|~x = 0〉 =

∫
d3p

(2π)3
ei~p·~xe−i

√
~p2+m2t

= − i

(2π)2r

∫ ∞

−∞

pdpeipre−i
√

p2+m2t

=
ie−mr

2π2r

∫ ∞

m

dzze−(z−m)r sinh(
√
z2 −m2t)

The last step is by deforming the contour in the complex p plane, and getting contributions

along the branch cut in the UHP, with z = −ip; the contribution along the big semi-circle

at infinity vanishes for r > t. The integral is positive, so non-vanishing outside the forward

light cone: acausal, with causality recovered as an approximation for r � m. In QFT, the

difference will be antiparticles to the rescue! The antiparticle contribution is added, and

cancels the acausality.

• Multiparticle states. E.g. |~k1, ~k2, . . .~kn〉, with completness

1 = |0〉〈0| +
∞∑

n=1

1

n!

∫
d3~k1

(2π)3
. . .

d3~k

(2π)3
|~k1 . . .~kn〉〈~k1 . . .~kn|.

Introduce a box for the moment, to make momenta discrete. Can then count how many

excitations of each momenta. Fock space description, like counting the excitation level of

the SHO. Like, there, introduce creation and annihilation operators.
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Recall H = p2

2 + 1
2ω

2x2 (setting m = 1, to avoid a later change in notation). Write

H = ω(a†a+ 1
2
), where [a, a†] = 1. Then define |0〉 s.t. a|0〉 = 0, and |n〉 = cn(a†)n|0〉.

Likewise, define a(~k) and a†(~k) s.t. [a(~k), a†(~k′)] = δ~k~k′
for momenta in a box (will

generalize to continuous, with Dirac delta functions). The multiparticle states are then
∏n

i=1 a
†(~ki)|0〉, and H =

∑
~k
ω(~k)a†(~k)a(~k).

• Note that d4kδ(k2 − m2)θ(k0) → d3k
2ω(k) upon doing the k0 integral. So normalize

〈k′|k〉 = (2π)32ω(k)δ3(~k − ~k′).

• Classical and quantum particle mechanics, L(qa, q̇a, t), pa = ∂L/∂q̇a, ṗa = ∂L/∂qa,

H =
∑

a paq̇a −L. Get quantum theory by replacing Poisson brackets with commutators,

[qa(t), pb(t)] = iδab. Recall OH(t) = eiHtOSe
−iHt and i d

dt
OH(t) = [OH(t), H].

• Classical field theory. E.g. scalars φa(t, ~x), with S =
∫
d4xL(φa, ∂µφa). Then

Πµ
a = ∂L/∂(∂µφa), and E.L. eqns ∂L/∂φa = ∂µΠµ

a . Define Πa ≡ Π0
a. H =

∫
d3x(Πφ̇a −

L) =
∫
d3xH.

Example: L = 1
2 (∂µφ∂

µφ −m2φ2). Get the Klein-Gordon equation. Can’t interpret

φ as a probability wavefunction because of solutions E = ±
√
~p2 +m2. But we’ll see that

the KG equation is fine as a field theory. (The field has both creation and annihilation

operators, corresponding to the E = ±
√
~k2 +m2 solutions.) Treated it first as a classical

field theory, and write the general solution by superposition. We’ll quantize next.

Ended around here

Another example: L = i
2 (ψ∗ψ̇ − ψ̇∗ψ) − ∇ψ∗ · ∇ψ − mψ∗ψ. Get EOM: i∂tψ =

−∇2φ+mψ. Looks like S.E., but again don’t want to interpret ψ as a probability amplitude

– here it’s a classical field.

• Quantum field theory: replace qa(t) → φa(t, ~x). QM is like QFT in zero spatial

dimensions, with the field playing role of position before:

[φa(~x, t),Πb(~y, t)] = iδabδ
3(~x− ~y) (Equal time commutators).

Example: for the KG theory,

φ(x) =

∫
d3k

(2π)3(2ω(k))
[a(k)e−ikx + a†(k)eikx].

Then get

[a(~k), a†(~k′)] = (2π)3(2ω)δ3(~k − ~k′).

H = 1
2

∫
d3k

(2π)2(2ω)
ω(a(~k)a†(~k) + a†(~k)a(~k)).
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Need to normal order the first term.

• Causality? Compute [φ(x), φ(y)] = D(x− y) −D(y − x), where

〈0|φ(x)φ(y)|0〉 = D(x− y) ≡
∫

d3k

(2π)32ω(k)
e−ik(x−y).

Note that the commutator is a c-number, not an operator. For spacelike separation,

(x − y)2 = −r2, get D(x − y) = m
2π2r

K1(mr). Although D(x − y) ∼ exp(−m|~x − ~y|) is

non-vanishing outside the forward light cone, the above difference is not. Good.

• Get more interesting theories by adding interactions, e.g. V (φ) = 1
2m

2φ2 + λφ4,

treat 2nd term as a perturbation.

• Symmetries of L and Noether’s theorem. If a variation δφa changes δL = ∂µF
µ,

then it’s a symmetry of the action and there is a conserved current: jµ = ∂L
∂(∂µφa)

δφa−Fµ.

Example: xµ → xµ + εµ, δφa = εν∂νφa, δL = εν∂νL (assuming no explicit x de-

pendence). Get Tµν = ∂L
∂∂µφa

∂νφa − gµνL. Stress energy tensor. Conserved charge is

Pµ =
∫
d3~xTµ0.

Another example: Λµ
ν = δµ

ν +ωµ
ν , leads to conservedMµρσ = xµTρσ−xσTρµ. Conserved

charge is Mρσ =
∫
d3xM0ρσ. Conserved angular momentum.

• Next time: Feynman propagator.
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