
10/30 and 11/1 Lecture outline

• More examples of ∆S. Consider two different ideal gasses, one with n1, and T1,

and V1, and the other with n2, T2, and V2. Suppose that T1 = T2, so they would be in

thermal equilibrium if brought together in thermal contact, but separated by a partition.

If T1 = T2, bringing the systems in thermal contact is reversible, so ∆S = 0. Now we

remove the partition between them, and let them mix. We get an increase in S (disorder)

from their intermixing:

∆Smixing = n1R ln

(

V1 + V2

V1

)

+ n2R ln

(

V1 + V2

V2

)

> 0.

This answer makes sense if the two types of gas are distinguishable, e.g. Nitrogen and

Oxygen. Gibbs asked the following question: how does this answer change when the two

gasses are the same? In this case, removing the partition really has no effect, so we should

get ∆Smixing = 0, instead of the above answer. This is called the “Gibbs paradox.” We

will discuss the resolution of the puzzle in a few weeks.

• Example 2: object 1, with initial temperature T1 is placed in thermal contact w

ith object 2, with initial temperature T2 > T1. Find the final temperature Tf and all the

entropy changes. Suppose that the objects have unchanging volume.

Take object 1 to have CV = C1(T ), and object 2 to have CV = C2(T ). Take T2 > T1.

Find Tf by equating the heat transfer

∆Q =

∫ Tf

T1

C1(T )dT =

∫ T2

Tf

C2(T )dT.

The entropy changes are

∆S1 =

∫ Tf

T1

C1(T )

T
dT > 0, ∆S2 = −

∫ T2

Tf

C2(T )

T
dT < 0.

If T1 6= T2, this process is irreversible, so we must find

∆Stotal = ∆S1 + ∆S2 > 0.

Let’s check that. To make things easier, suppose C1 = C2 = C. Then we get from the

above Tf = (T1 + T2)/2, and

∆Stotal = C ln

(

T 2
f

T1T2

)

= 2C ln

( 1
2 (T1 + T2)√

T1T2

)

> 0,
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where the last inequality follows from noting that

(

1
2
(T1+T2)
√

T1T2

)

= 1 +
(

(
√

T1−
√

T2)
2

2
√

T1T2

)

> 1.

• Example 2: System with temperature Ti is in contact with a reservoir at temperature

T0 < Ti. The two systems reach isobaric equilibribum. Compute ∆S’s.

The final temperature of the system is T0, that of the reservoir. The heat transfer is

∆Q = CP (Ti − T0). We get

∆Stotal = ∆Ssys + ∆Sres = CP ln

(

T0

Ti

)

+ CP

(Ti − T0)

T0

(Assuming CP is T independent here, otherwise use
∫

CP dT and
∫

CP dT/T . Get

∆Stotal = CP ((r − 1) − ln r)

where r = Ti/T0 > 1. Let’s show that this ∆Stotal ≥ 0. Consider f(r) = r − 1 − ln r, and

note f ′(r) = 1− 1/r vanishes only at r = 1. Since f ′′(r) = 1/r2 > 0, the function f(r) has

a minimum at r = 1. Since f(r = 1) = 0, we see f(r) > 0 for all r > 1. So ∆Stotal ≥ 0.

• Let’s go back to entropy and available energy. Consider a Carnot engine, where the

heat bath is T2 and the cold bath is T0. In this case, for a given heat Q extracted from the

heat reservoir, the maximum work is Wmax = Q(1−T0/T2). But suppose that the Carnot

engine gets heated only up to T1 < T2. Then Wmax is reduced to W ′
max = Q(1 − T0/T1).

Energy Q(T0

T1

1 − T0

T2

) = T0∆Stotal has become unavailable, degraded in form FOREVER!

Illustrates how ∆Stotal is a measure of the degradation of energy. Quality vs quantity:

energy is the quantity, conserved regardless, irrespective of whether or not it is useful. But

∆S accounts for the inevitable, and irreversible, degradation of energy, towards a useless

quality form.

After the midterm, we’ll discuss stat-mech, where we’ll relate S to molecular disorder:

S = k ln Ω, where Ω is the number of available states. Increasing T or V increases Ω, so it

increases S, as we have seen. The “3rd law” is S = 0 when Ω = 1, which is perfect order,

and this is possible only if T = 0.

Entropy and the arrow of time: if the time is tf > ti, then (Sf )total > (Si)total. So

the progress of time from initial to final states, i.e. from past to future, is accompanied by

an increase in entropy. This is the only known explanation for our observed arrow of time

(aside from tiny, and irrelevant, quantum effects).

• More on T, S diagrams. Plot an isentropic curve, ∆Q = 0: since ∆S = 0, this is

a vertical line in an T, S diagram. In isochoric curve, V = const., has slope (dT/dS)V =
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T/CV , which follows from the definition of CV and /dQ = TdS. Similarly, an isobaric curve

has slope (dT/dS)P = T/CP .

• Back to dU = TdS − PdV . Note that U , S, and V are extensive (we can divide

them by the mass to form the specific versions, u and s and v, which are intensive). On

the other hand, T and P are intensive. Now the relation dU = TdS−PdV naturally gives

U = U(S, V ). Recall that, because we assume equilibrium, we only need 2 state variables

to completely specify the state, and here we take them to be S and V . This is natural

because

dU =

(

∂U

∂S

)

V

dS +

(

∂U

∂V

)

S

dV = TdS − PdV,

where the important thing to note is that there are the same differentials, dS and dV , in

the two expressions. Comparing the two expressions for dU , we see that

T =

(

∂U

∂S

)

V

, and P = −
(

∂U

∂V

)

S

.

We will later take U(S, V ) and invert it to write S = S(U, V ). We will write this later as

S = k ln Ω(U, V ). The above relations will then be rewritten as

T−1 =

(

∂S

∂U

)

V

, and P = −
(

∂U

∂V

)

S

.

• Other thermodynamic potentials. Start from dU = TdS − PdV . Because T and

S appear together, they are called conjugate variables. Likewise, P and V are conjugate

variables.

T ↔ S, P ↔ V.

The thermodynamic state is specified by two variables, where we can pick one from either

pair of conjugate variables. If we’re talking about U , we picked S and V . Then the

conjugate variables are fixed in terms of U derivatives, as expressed above.

It is possible to do Legendre transforms to exchange S and/or V with the correspond-

ing conjugate variable, i.e.

T ↔ S, P ↔ V.

Then, again, the conjugates are fixed via derivatives of thermodynamic potentials.

Explicitly, to Legendre transform from P → V , we define the enthalpy

H ≡ U + PV = H(S, P ).
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Note that U = U(S, V ), but H = H(S, P ). To see that, note

dH = dU + PdV + V dP = TdS + V dP.

Since the last line has dS and dP , we get H = H(S, P ). Writing out dH, we then get

T =

(

∂H

∂S

)

P

, and V =

(

∂H

∂P

)

S

.

Likewise, we define the Helmholtz free energy F (T, V ) = U − ST , and get

S = −
(

∂F

∂T

)

V

, and P = −
(

∂F

∂V

)

T

.

Likewise we define the Gibbs function G(T, P ) = U + PV − TS and get

S = −
(

∂G

∂T

)

P

, and V =

(

∂G

∂P

)

T

.

• Suppose that a system has initial energy U0, and goes via some process to having

energy U(S, V ). The system has P , T , and V , and the exterior surroundings to the system

has pressure P0 and temperature T0. What is the work done? It depends on the process.

We get

dUsys = −/dWmech − P0dVsys + /dQsys,

where we wrote the work done by the system as mechanical work (pushing a piston) plus

the work done in expanding against the external pressure P0. Moreover,

/dQsys = −/dQsurr = −T0dSsurr.

Using dSuniverse = dSsys + dSsurr ≥ 0, we get −dSsurr ≤ dSsys, and thus

/dWmech = −dUsys − P0dVsys + T0dSsurr ≤ d(U − T0S + P0V )sys.

Let’s write this again, in terms of the availability A ≡ U − T0S + P0V ,

|/dW |max = −d(U − T0S + P0V ) ≡ −dA.

If in equilibrium, we can use dU = TdS − PdV to write

/dWmech ≤ − ((T − T0)dS − (P − P0)dV ) .
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Let’s interpret the two terms. The first term is the maximum work a Carnot engine would

do, operating between TH = T and TC = T0: if everything were reversible, the heat leaving

our system would be QH = −TdS, and that heat drives the Carnot engine, producing work

/dWcarnot = −(T − T0)dS. The second term is the mechanical work, subtracting out the

work done against the environment.

• If T is held fixed, e.g. the system is in contact with a reservoir, we have /dW ≤
−dFsystem. Also, if T and V are constant in the process, we can write the above as

/dWmech ≤ −dFsys. Here Wmech includes configuration work, e.g. /dWelec = ~E · dP , and

Fsys can still change, for that reason. If T and P are constant, we get /dWmech ≤ −dGsys.

If S and P are constant, we have /dWmech ≤ −dHsys.
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