10/16 Lecture outline

- Clausius: no device can be made that operates in a cycle and whose **SOLE** effect is to transfer heat from cooler to hotter body. I.e. refrigerator efficiency $\omega = |Q_C|/|W| < \infty$. Picture seeming to violate it: must have Q < 0.
- Kelvin: It is impossible to construct a device that operates in a cycle and produces no other effect other than the extraction of heat from a reservoir and the performance of an equal amount of work. I.e. $\eta \equiv |W|/|Q_H| < 1$. Picture seeming to violate it: must have W < 0.
- Nothing beats a reversible engine! Because otherwise, in combination with the reversed engine (acting as a refrigerator) would violate Clauius' statement. Moreover, all reversible engines have the same efficiency. $\eta \leq \eta_{max} = \eta_{rev}$.
- Mention non-cyclic process, $A \to B$. Recall $\Delta U = \Delta Q \Delta W = \Delta Q_R \Delta W_R$. General result: $\Delta W \leq \Delta W_R$ and $\Delta Q \leq \Delta Q_R$. Illustrate with ideal gas for 2 cases: reversible isotherm and reversible adiabat, vs. irreversible counterparts.
- Work through examples of a Carnot engine (2 isotherms, 2 adiabats). Obtain $\eta = 1 T_C/T_H$.
- Use Carnot engine to define temperature θ : $\eta = 1 \Theta_C/\Theta_H$. Lots of C-engines in series, defines Θ temperature scale. Agrees with previous definition, $\Theta = T$ (!).