10/11 Lecture outline

• Last time: Ideal gas has U = U(T), so $\oint Q = C_V dT + pdV$. Using ideal gas law, get $\oint Q = (C_V + nR)dT - VdP$. Conclude $C_P = C_V + nR$ for ideal gas. Thus $C_V = nR/(\gamma - 1)$, $C_P = \gamma nR/(\gamma - 1)$. Can integrate $C_V = dU/dT$ to find U(T) in terms of γ . Note: in general $\gamma = \gamma(T)$. We will not assume it is T independent. Its T dependence depends on gas type. Write $\gamma - 1 = 2/f$. If it is monatomic, find f = 3, independent of T. If diatomic, find $f \approx 3$ for $T < \theta_{rot}$, and $f \approx 5$ for $\theta_{rot} < T < \theta_{vib}$, and $f \approx 7$ for $T > \theta_{vib}$, so C_V is nearly constant, but with occasional jumps. Approximating C_V as contant, get $U(T) = C_V T = fnRT$. But, in what follows here, we'll write general formulae.

• P, V diagrams and ideal gas. Picture of $\beta = (\partial \ln V / \partial T)_P = 1/T$, and $\kappa_T = -(\partial \ln V / \partial P)_T = 1/P$.

• Now picture $dQ = C_V dT + P dV = C_P dT - V dP$. Comparing, see that $dT = (dQ + V dP)/C_P = (dQ - P dV)/C_V$, and thus $nR dQ = C_V V dP + C_P P dV$. For a quasistatic and adiabatic process, have $dT = -P dV/C_V = V dP/C_P$, which integrates to $PV^{\gamma} = \text{constant}$.

So get $\left(\frac{\partial P}{\partial V}\right)_{adi} = -\gamma P/V = \gamma \left(\frac{\partial P}{\partial V}\right)_T > \left(\frac{\partial P}{\partial V}\right)_T$. So adiabatic curve has steeper slope than isothermal curve in P/V diagram. See here $\kappa_T = \gamma \kappa_{adi}$ (and more generally too).

• Examples of ΔW for various processes. E.g. for solid with $\kappa_T \approx \text{constant}$, get $\Delta W \approx -\frac{1}{2}\kappa_T V_{av}(P_f^2 - P_i^2)$, e.g. 10g Copper, from $P_i = 1atm$ to $P_f = 10^3 atm$. Examples of ΔW for ideal gas

Examples of ΔW for ideal gas

1. isothermal: $\Delta U = 0$. $\Delta Q = \Delta W = nRT \ln(V_f/V_i) = nRT \ln(P_i/P_f)$.

2. isochoric: $\Delta W = 0$. $\Delta Q = \Delta U = C_V \Delta T$

3. isobaric: $\Delta W = P\Delta V = nR\Delta T$. $\Delta Q = C_P\Delta T = (C_V + nR)\Delta T$

4. adiabatic: $\Delta Q = 0$. $\Delta W = -\Delta U = -C_V \Delta T$.

• Engines. Efficiency $\eta \equiv |W|/|Q_H|$. E.g. isothermal expansion of ideal gas: $|W| = |Q| = nRT \ln(P_i/P_f)$ has $\eta = 1$, but this is a one-shot process. Final state differs from initial.

• For an engine, want cyclic process, coming back to starting state, i.e. closed loop in P/V diagram. For complete cycle, $\Delta U = 0$ (state variable). Total work of process = |W| = area enclosed by cycle in P/V diagram. In process, some heat $|Q_H|$ is taken out of some hot working substance (e.g. boiler), and then some heat is ejected into cold area (e.g. the smoke going out into the atmosphere). $|W| = |Q_H| - |Q_C|$, so $\eta = 1 - |Q_C|/|Q_H| \le 1$. Perfect engine would have $\eta = 1$, but this is impossible.

• Refrigerator performance: $\omega = |Q_C|/|W| = 1/(1 - |Q_C|/|Q_H|)$. Perfect refrigerator would have $\omega = \infty$, but this is impossible.

• Preview of 2nd law: (Clauius) no device can be made that operates in a cycle and whose **SOLE** effect is to transfer heat from cooler to hotter body. In other words, no perfect refrigerators. Equivalent to Kelvin statement It is impossible to construct a device that operates in a cycle and produces no other effect than the performance of work and the exchange of heat with a single reservoir. In other words, no perfect engines.

• Show that two statements are equivalent: with a perfect engine, could make a perfect refrigerator; and given a perfect refrigerator could make a perfect engine.

• Nothing beats a reversible engine! Because otherwise, in combination with the reversed engine (acting as a refrigerator) would violate Clauius' statement. All reversible engines have the same efficiency. $\eta \leq \eta_{max} = \eta_{rev}$.