
10/11 Lecture outline

• Last time: Ideal gas has U = U(T ), so /dQ = CV dT + pdV . Using ideal gas law, get

/dQ = (CV +nR)dT −V dP . Conclude CP = CV +nR for ideal gas. Thus CV = nR/(γ−1),

CP = γnR/(γ − 1). Can integrate CV = dU/dT to find U(T ) in terms of γ. Note: in

general γ = γ(T ). We will not assume it is T independent. Its T dependence depends

on gas type. Write γ − 1 = 2/f . If it is monatomic, find f = 3, independent of T . If

diatomic, find f ≈ 3 for T < θrot, and f ≈ 5 for θrot < T < θvib, and f ≈ 7 for T > θvib,

so CV is nearly constant, but with occasional jumps. Approximating CV as contant, get

U(T ) = CV T = fnRT . But, in what follows here, we’ll write general formulae.

• P, V diagrams and ideal gas. Picture of β = (∂ lnV/∂T )P = 1/T , and κT =

−(∂ lnV/∂P )T = 1/P .

• Now picture /dQ = CV dT + PdV = CP dT − V dP . Comparing, see that dT =

(/dQ+V dP )/CP = (/dQ−PdV )/CV , and thus nR/dQ = CV V dP+CP PdV . For a quasistatic

and adiabatic process, have dT = −PdV/CV = V dP/CP , which integrates to PV γ =

constant.

So get
(

∂P
∂V

)

adi
= −γP/V = γ

(

∂P
∂V

)

T
>

(

∂P
∂V

)

T
. So adiabatic curve has steeper slope

than isothermal curve in P/V diagram. See here κT = γκadi (and more generally too).

• Examples of ∆W for various processes. E.g. for solid with κT ≈ constant, get

∆W ≈ −1

2
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f − P 2

i ), e.g. 10g Copper, from Pi = 1atm to Pf = 103atm.

Examples of ∆W for ideal gas

1. isothermal: ∆U = 0. ∆Q = ∆W = nRT ln(Vf/Vi) = nRT ln(Pi/Pf ).

2. isochoric: ∆W = 0. ∆Q = ∆U = CV ∆T

3. isobaric: ∆W = P∆V = nR∆T. ∆Q = CP ∆T = (CV + nR)∆T

4. adiabatic: ∆Q = 0. ∆W = −∆U = −CV ∆T.

• Engines. Efficiency η ≡ |W |/|QH |. E.g. isothermal expansion of ideal gas: |W | =

|Q| = nRT ln(Pi/Pf ) has η = 1, but this is a one-shot process. Final state differs from

initial.

• For an engine, want cyclic process, coming back to starting state, i.e. closed loop in

P/V diagram. For complete cycle, ∆U = 0 (state variable). Total work of process = |W | =

area enclosed by cycle in P/V diagram. In process, some heat |QH | is taken out of some

hot working substance (e.g. boiler), and then some heat is ejected into cold area (e.g. the

smoke going out into the atmosphere). |W | = |QH | − |QC |, so η = 1 − |QC |/|QH | ≤ 1.

Perfect engine would have η = 1, but this is impossible.
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• Refrigerator performance: ω = |QC |/|W | = 1/(1− |QC |/|QH |). Perfect refrigerator

would have ω = ∞, but this is impossible.

• Preview of 2nd law: (Clauius) no device can be made that operates in a cycle and

whose SOLE effect is to transfer heat from cooler to hotter body. In other words, no

perfect refrigerators. Equivalent to Kelvin statement It is impossible to construct a device

that operates in a cycle and produces no other effect than the performance of work and the

exchange of heat with a single reservoir. In other words, no perfect engines.

• Show that two statements are equivalent: with a perfect engine, could make a perfect

refrigerator; and given a perfect refrigerator could make a perfect engine.

• Nothing beats a reversible engine! Because otherwise, in combination with the

reversed engine (acting as a refrigerator) would violate Clauius’ statement. All reversible

engines have the same efficiency. η ≤ ηmax = ηrev.
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