10/2 Lecture outline

• Last time: 0-th law. Can tell when 2 systems are at the same temperature Θ. Now use this to build a thermometer and define a temperature scale. Will pick a particular definition of temperature, and call this T.

• Equation of state: $f(P, V, T) = 0$. Observed fact: at low densities, all fluids have approximately the same equation of state: $PV - n\phi(T) = 0$. Function $\phi(T)$ depends on definition of T. Sensible to take $\phi(T) = aT + b$. All substances have same a and b. Could define T such that $a = 1$ and $b = 0$. Instead, we use Kelvin, $\phi(T) = RT_K$, where $R = 8.3143 \times 10^3 J/(kmole)(deg K)$, or Celsius/Centigrade, with $T_C = T_K - 273.15$.

• So at low densities, all fluids have equation of state given approximately by the *ideal* gas law (with T in Kelvin)

$$
PV = nRT.
$$

• Official SI definition of temperature: Fix constant $a = R$ above by a choice of a reference temperature: triple point of water occurs at a unique temperature, which SI defines to be $T_3 \equiv 273.16K$. (Pressure $P_3 = 0.00602$ atm.)

• More general equation of state, $f(P, V, T) = 0$ (for equilibrium). Can solve for $P=P(V,T),\, {\rm or}\,\, T=T(P,V),\, {\rm or}\,\, V=V(T,P).$

• Some math:

$$
dP = \left(\frac{\partial P}{\partial T}\right)_V dT + \left(\frac{\partial P}{\partial V}\right)_T dV.
$$

Divide by dP , keeping T constant:

$$
1 = \left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial P}\right)_T.
$$

Divide by dT , keeping P constant

$$
0 = \left(\frac{\partial P}{\partial T}\right)_V + \left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P.
$$

Follows that

$$
\left(\frac{\partial P}{\partial T}\right)_V\left(\frac{\partial T}{\partial V}\right)_P\left(\frac{\partial V}{\partial P}\right)_T=-1.
$$