
12/6 Lecture outline

• Now let’s instead maximize the quantum counts of microstates

ω({Ni})B.E. =
∏

i

(Ni + gi − 1)!

Ni!(gi − 1)!
bosons

ω({Ni})F.D. =
∏

i

gi!

Ni!(gi − Ni)!
fermions.

• Bose Einstein case:

lnωB.E. ≈
∑

i

[(Ni + gi − 1) ln(Ni + gi − 1) − Ni lnNi − (gi − 1) ln(gi − 1)],

where we used Stirling’s approximation. With the Lagrange multipliers to enforce N =
∑

i Ni and U =
∑

i Niεi, as above, we find

ln(Ni + gi − 1) − lnNi + α + βεi = 0.

which gives

N∗

i = (gi − 1)
1

e−α−βεi − 1
≈ gi

1

e−α−βεi − 1
,

where we took gi � 1 for the last step. The above result differs from M.B. thanks to the

−1 in the denominator. We also get

lnωB.E.({N∗

i }) =
∑

i

[N∗

i ln((N∗

i + gi − 1)/N∗

i ) + (gi − 1) ln(((N∗

i + gi − 1)/(gi − 1))]

= −kαN − kβU − k
∑

i

gi ln(1 + eα+βεi)

And now comparing with S = 1
T

U + PV
T

− 1
T

µN we have α = µ/kT and β = −1/kT , as

before, but now the equation of state is

PV = −kT
∑

i

gi ln(1 − eα+βεi).

And S = k lnωmax, without the need to put in by hand the 1/N ! as in the MB case.

• Fermi Dirac case:

lnωB.E. ≈
∑

i

[gi ln gi − Ni lnNi − (gi − Ni) ln(gi − Ni)],

1



This is maximized for

ln((gi − Ni)/N1) + α + βεi = 0,

which gives

N∗

i = gi
1

e−α−βεi + 1
.

Note that this properly satisfies N∗

i ≤ gi. Again, α = µ/kT , and β = −1/kT and

S ≈ k lnωmax, and now

PV = kT
∑

i

gi ln(1 + eα+βεi).

• Summarize,
N∗

i

gi
=

1

e(εi−µ)/kT + a

with a = −1 for Bose case (integer spin, e.g. photons), a = +1 for Fermi case (odd

half-integer spin, e.g. electrons), and a = 0 for the M.B. case. Plot this as a function of

x = (εi − µ)/kT . These cases all agree in the classical limit, which is where x � 1 i.e.

where

e−α−βεi � 1

, i.e. when

N∗

i /gi � 1.

Since N∗

i /gi = (N/Z)e−εi/kT , the system behaves classically if

N � Z

Which for a monatomic gas becomes

h√
2πmkT

�
(

V

N

)1/3

.

In the classical limit µ = kT ln(N/Z) is very negative. Decreasing T then decreases x,

and eventually the physics of the MB, BE, FD distinction becomes important. Note that

in the classical limit, all the above equations of state simply reduce to the ideal gas law,

PV = NkT .

• BE case: µ → 0 at finite T , and then N∗

i diverges for εi = 0. This is Bose

condensation.

• FD case: at low temperature, µ becomes positive, so that N∗

i
∼= 1 for εi < µ and

zero for εi > µ. This has important consequences. It’s called the Fermi-liquid theory of

low-temperature metals.
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• Einstein’s model for the specific heat of solids. Model a solid with N atoms as N

3d harmonic oscillators, with some frequency ωE . This is equivalent to 3N 1d harmonic

oscillators, since H3d = ~p2/2m + 1
2mω2~x2 = Hx + Hy + Hz. Note: the 3N oscillators

are effectively distinguishable, since at different locations, so can use ωMB . But we also

describe the excitations of the harmonic oscillator in terms of phonons, which behave like

indistinguishable bosons. These energy excitations are not real particles, in any classical

sense, but the quanta of vibrations behave particle-like, so they’re called quasiparticles.

• Compute the partition function Z of a 1d harmonic oscillator.

Z =

∞
∑

n=0

e−εn/kT = e−hν/2kT
∞
∑

n=0

(e−hν/kT )n = e−hν/2kT 1

1 − e−hν/kT
.

where we used gn = 1, and summed the geometric series. For high temperature, this gives

Z ≈ kT/hν, which agrees with the approximate answer above. The energy is

U = 3NkT 2 ∂

∂T
lnZ = 3N

[

1
2hν +

hν

ehν/kT − 1

]

.

For T → 0, this gives U → 3N( 1
2hν), all the H.O.s are in their groundstate. For high

temperature, kT � hν, on the other hand, we expand the above to get U ≈ 3N( 1
2
hν +

kT − 1
2
hν) = 3NkT , which is the classical equipartition answer.

• Einstein theory for C of solid. N atoms ≈ 3N distinguishable 1d SHOs.

U = 3NkT 2 ∂

∂T
lnZ = 3N

[

1
2hν +

hν

ehν/kT − 1

]

.

CV =

(

∂U

∂T

)

V

= 3Nk(θE/T )2
eθE/T

(eθE/T − 1)2
,

with θE ≡ hν/k. For T � θE , get CV ≈ 3Nk. For T � θE , get CV ≈ 3Nk(θE/T )2e−θE/T .

When θE/T is small, we have the equipartition expression, including the vibrational d.o.f..

When θE/T is large, the vibrational d.o.f. is not excited – the atom is in the groundstate.

Note that θE ∼ ν ∼
√

κ/µ is large for light elements or those that are very stiff, e.g.

for diamond θE = 1450K. A single curve gives a very good approximation for CV (T ), for

different solids (measurement at one value of T suffices to determine θE) and temperatures.

However, discrepancies for range T ∼ θE and below.

• This topic was only briefly mentioned in lecture: Debye’s improvement to Einstein’s

model. Replace atom oscillators with phonon field. Sound wave in cubic box, of side length

L, stationary waves are

Φ = A sin(nxπx/L) sin(nyπy/L) sin(nzπz/L),
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with frequency ν = cn/2L, where c is here the speed of sound and n ≡
√

n2
x + n2

y + n2
z.

The approximate number of modes in range dν is

g(ν)dν =
1

8
4πn2dn =

4πV

c3
ν2dν,

or more precisely

g(ν)dν = 4πV (c−3
l + 2c−3

t )ν2dν,

where cl and ct are the longitudinal and transverse sound speeds. The maximum frequency

is determined by

3N =

∫ νm

0

g(ν)dν =
4πV

3
(c−3

l + 2c−3
t )ν3

m.

So

g(ν)dν = 9Nν−3
m ν2dν,

(v.s. Einstein’s model, where only one frequency enters). Since phonons are bosons, use

ωBE , which is maximized by occupation numbers

N(ν)dν =
g(ν)dν

ehν/kT − 1
=

{

9Nν−3
m

ν2dν
ehν/kT

−1
ν ≤ νm

0 ν > νm.

The total energy is

U =

∫

hνN(ν)dν =
9

8
Nhνm + 9Nhν−3

m

∫ νm

0

ν3dν

ehν/kT − 1
.

This gives

CV = 9Nkx−3
m

∫ xm

0

x4ex

(ex − 1)2
dx,

with xm ≡ hνm/kT ≡ θD/T , where θD is the “Debye temperature.” For xm � 1 (high

temperature), this gives CV ≈ 3Nk, as expected. For low temperature, this gives CV ≈
1
5
12π4Nk(T/θD)3; valid for T below 0.1θD ∼ 10 − 20K. Better fit to low-T data than

Einstein’s model.
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