
12/4 Lecture outline

• Recall

S(U, N, ...) = k ln Ω(U, N, ...) ≈ k lnωmax.

Ω(U, N) =
∑

{Ni}

′

ω({Ni}),

where the prime is a reminder that the {Ni} must satisfy
∑

i Ni = N and
∑

i Niεi = U .

Can work out what S this gives for for the different cases:

ωM.B.({Ni}) = N !
n
∏

i=1

gNi

i

Ni!
,

ωM.B.G.({Ni}) =
n
∏

i=1

gNi

i

Ni!
,

ω({Ni})B.E. =
∏

i

(Ni + gi − 1)!

Ni!(gi − 1)!
bosons

ω({Ni})F.D. =
∏

i

gi!

Ni!(gi − Ni)!
fermions.

• Work it out for the M.B.G. distribution. Maximize it over microstates, subject to the

constraints that we reproduce the macroscopic U and N . Using Stirling’s approximation

(taking all Ni large) we have

lnωM.B.({Ni}) =
n
∑

i=1

Ni ln gi − lnNi! ≈
∑

i

Ni

[

ln

(

gi

Ni

)

+ 1

]

.

We want to maximize this, over all Ni, subject to the constraints N =
∑

i Ni and U =
∑

i Niεi. Use Lagrange mulipliers to enforce these constraints. So maximize

∑

i

Ni

[

ln

(

gi

Ni

)

+ 1 + α + βε

]

,

over all Ni, where α and β are Lagrange multipliers. Get that ω is maximized for Ni = N∗
i ,

given by

N∗
i = gi exp(α + βεi),

lnωmax ≈ −αN − βU + N.

Recall from thermodynamics that

U − TS + PV ≡ G = µN,
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so

S = − µ

T
N +

1

T
U +

PV

T

Compare with

k lnωmax ≈ kαN − kβU + kN.

Fits with

PV = NkT

α = µ/kT

β = −1/kT

• Summary: Find ωMBG is maximized, for fixed U and N , by taking

N∗
i = gi exp(α + βεi),

α = µ/kT

β = −1/kT

where we still need to enforce

N =
∑

i

N∗
i = eα

∑

i

gie
βεi

U =
∑

i

N∗
i εi = eα

∑

i

giεie
βεi .

This gives

S = k ln Ω ≈ k lnωmax ≈ −kαN − kβU + kN.

Compare with

S = −µ

T
N +

1

T
U +

PV

T
,

to get the above identifications of α and β, and also PV = NkT ; this shows that the k

appearing in S = k ln Ω is the same k constant as appears in the ideal gas law.

• Define the partition function (of single molecule)

Z(T, V ) ≡
∑

i

gie
βεi ,

Then eα = N/Z and so the chemical potential per molecule is

µ = kT ln(N/Z).
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Also, U = N( ∂
∂β lnZ)εi

which can be written as

U = NkT 2

(

∂

∂T
lnZ

)

V

.

Then

S =
U

T
+

PV

T
− µN

T
=

U

T
+ Nk + Nk ln(Z/N),

F = U − TS = −NkT (1 + ln(Z/N)) .

G = Nµ = NkT ln(N/Z).

• Example of ideal monatomic gas.

Z =
∑

i

gie
βεi ≈

∫ ∞

0

eβεg(ε)dε

=

∫ ∞

0

e−ε/kT

(

4
√

2πV

h3
m3/2ε1/2

)

dε

= V

(

2πmkT

h2

)3/2

.

So then

µ = kT ln

[

N

V

(

h2

2πmkT

)3/2
]

,

U = NkT 2(
3

2

1

T
) =

3

2
NkT,

S = NK

[

5

2
+ ln

[

V

N

(

2πmkT

h2

)3/2
]]

,

F = −NkT

[

1 + ln

[

V

N

(

2πmkT

h2

)3/2
]]

.

Verify: S = −(∂F/∂T )V,N and P = −(∂F/∂V )T,N .

• Molecular speed distribution. N(ε)dε = eα+βεg(ε)dε. So

p(ε)dε =
N(ε)dε

N
=

g(ε)eα+βεdε
∫∞

0
eα+βεg(ε)dε

,

=
2√

π(kT )3/2
e−ε/kT ε1/2dε,
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where we used g(ε) ∼ √
ε (which follows from g(ε)dε = 1

8
4πn2dn and ε = h̄2π2n2/2mL2).

Using ε = 1

2
mv2, this agrees with the Maxwell velocity distribution. Also, the average

energy per particle is

ε =

∫

εp(ε)dε = U/N =
3

2
kT,

which is the equipartition of energy for a monatomic molecule.

• The MBG approximation is valid in the classical regime; this is the case if the gas

is dilute, meaning that we require Ni � gi. Example in book: Helium gas at STP, find

Ni/gi ≈ 4 × 10−6, so indeed in classical regime.

• Now let’s instead maximize the quantum counts of microstates

ω({Ni})B.E. =
∏

i

(Ni + gi − 1)!

Ni!(gi − 1)!
bosons

ω({Ni})F.D. =
∏

i

gi!

Ni!(gi − Ni)!
fermions.

• Bose Einstein case:

lnωB.E. ≈
∑

i

[(Ni + gi − 1) ln(Ni + gi − 1) − Ni lnNi − (gi − 1) ln(gi − 1)],

where we used Stirling’s approximation. With the Lagrange multipliers to enforce N =
∑

i Ni and U =
∑

i Niεi, as above, we find

ln(Ni + gi − 1) − lnNi + α + βεi = 0.

which gives

N∗
i = (gi − 1)

1

e−α−βεi − 1
≈ gi

1

e−α−βεi − 1
,

where we took gi � 1 for the last step. The above result differs from M.B. thanks to the

−1 in the denominator. We also get

lnωB.E.({N∗
i }) =

∑

i

[N∗
i ln((N∗

i + gi − 1)/N∗
i ) + (gi − 1) ln(((N∗

i + gi − 1)/(gi − 1))]

= −kαN − kβU − k
∑

i

gi ln(1 + eα+βεi)

And now comparing with S = 1

T U + PV
T − 1

T µN we have α = µ/kT and β = −1/kT , as

before, but now the equation of state is

PV = −kT
∑

i

gi ln(1 − eα+βεi).
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And S = k lnωmax, without the need to put in by hand the 1/N ! as in the MB case.

• Fermi Dirac case:

lnωB.E. ≈
∑

i

[gi ln gi − Ni lnNi − (gi − Ni) ln(gi − Ni)],

This is maximized for

ln((gi − Ni)/N1) + α + βεi = 0,

which gives

N∗
i = gi

1

e−α−βεi + 1
.

Note that this properly satisfies N∗
i ≤ gi. Again, α = µ/kT , and β = −1/kT and

S ≈ k lnωmax, and now

PV = kT
∑

i

gi ln(1 + eα+βεi).

• Summarize,
N∗

i

gi
=

1

e−α−βεi + a

with a = −1 for Bose case (integer spin, e.g. photons), a = +1 for Fermi case (odd

half-integer spin, e.g. electrons), and a = 0 for the M.B. case. Plot this as a function of

x = (εi − µ)/kT . These cases all agree in the classical limit, which is where x � 1 i.e.

where

e−α−βεi � 1

, i.e. when

N∗
i /gi � 1.

Since N∗
i /gi = (N/Z)e−εi/kT , the system behaves classically if

N � Z

Which for a monatomic gas becomes

h√
2πmkT

�
(

V

N

)1/3

.

In the classical limit µ = kT ln(N/Z) is very negative. Decreasing T then decreases x,

and eventually the physics of the MB, BE, FD distinction becomes important. Note that

in the classical limit, all the above equations of state simply reduce to the ideal gas law,

PV = NkT .

• BE case: µ → 0 at finite T , and then N∗
i diverges for εi = 0. This is Bose

condensation.

• FD case: at low temperature, µ becomes positive, so that N∗
i
∼= 1 for εi < µ and

zero for εi > µ. This has important consequences. It’s called the Fermi-liquid theory of

low-temperature metals.
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