12/4 Lecture outline
e Recall
S(U,N,..)=kInQ(U,N,...) ~ kInwnaz.
QU N) = w({N:}),
{Vi}
where the prime is a reminder that the {N;} must satisfy > . N; = N and ), N;e; = U.

Can work out what S this gives for for the different cases:

wm.B.c.({Ni}) =
wwwmﬂzﬂggggﬁ; bosons
w({Ni})r H Nil(g fermions.

e Work it out for the M.B.G. distribution. Maximize it over microstates, subject to the
constraints that we reproduce the macroscopic U and N. Using Stirling’s approximation

(taking all N; large) we have

Inwyr.g. ({N:}) = ZNi Ing; — In N;! = ZNi {ln (%) + 1} )
=1 i

(2

We want to maximize this, over all N;, subject to the constraints N = ) . N; and U =

>; Nie;. Use Lagrange mulipliers to enforce these constraints. So maximize

SN [ln(%)-i—l-l—oz-l—ﬁe],

2

over all V;, where a and (3 are Lagrange multipliers. Get that w is maximized for N; = N,
given by
N{ = giexp(a + Be;),

Inwper & —aN — U + N.
Recall from thermodynamics that
U-TS+ PV =G = uN,
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SO
PV

7 1
—_En4 = -
S h + TU + T
Compare with

kInwmaes =~ kaN — kBU + kN.

Fits with
PV = NET
a=u/kT
B=—1/kT

e Summary: Find wyspa is maximized, for fixed U and N, by taking
N} = g;exp(a + f¢;),
a=u/kT
B =-1/kT

where we still need to enforce

N = ZNi* =e® Zgieﬂei
U= ZNZ*GZ = e Zgieieﬁei.

This gives
S=klnQ =~ klnwpe: ~ —kaN — kBU + kN.

Compare with

I 1 PV
— N4 =
S T +TU+ T

to get the above identifications of a and (3, and also PV = NET'; this shows that the &
appearing in S = kIn {2 is the same k constant as appears in the ideal gas law.

e Define the partition function (of single molecule)
Z(T7 V) = Z gieﬂ€i7
Then e® = N/Z and so the chemical potential per molecule is

w=kTIn(N/Z).
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Also, U = N(% In Z)., which can be written as

U= NkT? i1nZ .
oT v

U PV uN U
S_T—l_T_T_ T—I—Nk-l—Nk‘ln(Z/N),

Then

F=U-TS=—NkT (1+In(Z/N)).
G = Np= NkTIn(N/Z).

e Example of ideal monatomic gas.

Z=y gic™ %/ e’“g(e)de
,I'/ O

- / /T <74ﬁjvm3/261/2> de
h
0

2mmkT 3/2
=V 2 .

N h2 3/2
v <27rka)

31, 3
S )= SNKT
>7) = Nk

1% (27rka) 3/2

So then

w=FkTIn

)

U = NET?(

5

54‘111

S=NK

N\ n2

V ([ 2rmkT\*?
N h?
Verify: § = —(0F/0T)y,ny and P = —(0F/0V )7 n.

e Molecular speed distribution. N (e)de = e*TF¢g(e)de. So

|
|

F=—-NkT |1+ 1n

a+Pe
p(e)de = N (e)de _ ogi(e)e de ,
N Jo extPeg(e)de

2
— G_E/kTEI/QdE,

VA(kT)P
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where we used g(€) ~ /e (which follows from g(e)de = 4mn?dn and € = h2m2n?/2mL?).
Using € = %mvz, this agrees with the Maxwell velocity distribution. Also, the average

energy per particle is 5
€= /ep(e)de =U/N = §kT,

which is the equipartition of energy for a monatomic molecule.

e The MBG approximation is valid in the classical regime; this is the case if the gas
is dilute, meaning that we require N; < g;. Example in book: Helium gas at STP, find
N;/gi =4 x 107°, so indeed in classical regime.

e Now let’s instead maximize the quantum counts of microstates

(N; 4+ g; — 1)!
w{N:})B.E. = H Nl(g — 1) bosons
! .
w({Nz})FD = H m fermions.

e Bose Einstein case:
lnwp g ~ Z[(N’ +¢g—1)In(N;+g;,—1)— N;InN; — (g; — 1) In(g; — 1)],

where we used Stirling’s approximation. With the Lagrange multipliers to enforce N =
>, Niand U =), Nje;, as above, we find

In(N; +g; — 1) —InN; + o + Be; = 0.

which gives

1 1
= 0= ) =

where we took g; > 1 for the last step. The above result differs from M.B. thanks to the

—1 in the denominator. We also get

mwp.p ({(N}) = D [N In((N] + g5 — 1)/N) + (9 — D) In(((N + gi — 1)/ (95 = 1))]

(2

= —kaN — kBU — kY _ giIn(1+ e**7%)

And now comparing with S = U + £ — LuN we have a = p/kT and 3 = —1/kT, as

before, but now the equation of state is

PV = —kTZgi In(1 — e>Ae),
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And S = kInwqz, without the need to put in by hand the 1/N! as in the MB case.

e Fermi Dirac case:
lnwp g ~ Z[gl Ing; — N;InN; — (g; — N;) In(g; — N;)],

This is maximized for
In((g: — Ni)/N1) + a+ Be; = 0,

which gives

1
Nf=g¢g———>——.
i T mamha 11
Note that this properly satisfies N} < ¢g;. Again, o = p/kT, and = —1/kT and

S =~ klnwnge, and now

PV =kT) giln(1+e**0%),

e Summarize,

Ny
gi e Pe g
with @ = —1 for Bose case (integer spin, e.g. photons), a = +1 for Fermi case (odd

half-integer spin, e.g. electrons), and a = 0 for the M.B. case. Plot this as a function of

x = (¢, — u)/kET. These cases all agree in the classical limit, which is where x > 1 i.e.

where
e P > 1
, i.e. when
N} /g < 1.
Since N;/g; = (N/Z)e “/*T  the system behaves classically if
N« Z

Which for a monatomic gas becomes

h Vv 1/3
2mmkT (N)

In the classical limit p = kT In(NN/Z) is very negative. Decreasing T then decreases =z,
and eventually the physics of the MB, BE, FD distinction becomes important. Note that
in the classical limit, all the above equations of state simply reduce to the ideal gas law,
PV = NET.

e BE case: p — 0 at finite 7', and then N diverges for ¢, = 0. This is Bose
condensation.

e FD case: at low temperature, ;1 becomes positive, so that N = 1 for ¢; < p and
zero for ¢; > p. This has important consequences. It’s called the Fermi-liquid theory of

low-temperature metals.



