
11/20 Lecture outline

• Last time: To complete the connection, we need to understand why

U = N 1
2mv2 =

3

2
nRT i.e. why 1

2mv2 =
3

2
kT,

where we use n = N/NA and k = R/NA, with NA = 6.02 × 1026 particles per kilomole.

We can extend this to diatomic and other ideal gases - then we have seen that

U = N
f

2
kT,

where f is the number of degrees of freedom. This last expression is called equipartition

of energy.

• Plug in some numbers: at room temperature, 3
2
kT ≈ 6 × 10−21J . Mass of e.g. O2

molecule is m = 32 × 1.66 × 10−27kg, so vrms ≈ 480m/s. Pretty fast! Note vsound ≈

340m/s. Makes sense: sound waves can’t travel faster than the molecules themselves.

• Now let’s figure out what F (~v) is. Argue it should be of the gaussian normal

distribution form:

F (~v) =
(α

π

)3/2

exp(−α~v2),

where α is a constant, and the normalization factor ensures
∫

F (~v)d3~v = 1. With this

distribution, we easily compute v2 = 3
2α - this sets the size of the standard deviation of

the probability distribution. To get our desired relation, 1
2
mv2 = 3

2
kT , we see that we

need the probability distribution to have α = m/2kT , i.e.

F (~v) =
( m

2πkT

)3/2

exp(−1
2m~v2/kT ),

This is the Maxwell-Boltzman velocity distribution. It is sharply peaked around ~v when

T is small, and becomes a very broad distribution when T is large. This fits with our

intuition: larger T means more jiggling of the molecules.

• Mean speed: v =
∫ ∞

0
vf(v)dv =

√

8kT/πm. v2 =
∫ ∞

0
v2f(v)dv = 3kT/m, so

vRMS =
√

3kT/m. Most probable speed: f(v) is a maximum at vm.p. =
√

2kT/m.

• Review gaussian distribution:

p(x) =
1

√
2πσ

exp(−(x − x)2/2σ2),
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where x is the mean and σ is the standard deviation. This distribution is common when

there are large numbers in the sample. Note that

∫ ∞

−∞

(x − x)np(x) =

{

1√
π
2n/2σnΓ( 1

2
(1 + n)) for n even

0 for n odd
(1)

Here Γ(z) ≡
∫ ∞

0
tz−1e−tdt is the gamma function. By an integration by parts (with u = tz

and dv = e−tdt), you can show the gamma function satisfies the interesting property:

Γ(z + 1) = zΓ(z). From this, it follows that Γ(n) = (n − 1)! for integer n, so the gamma

function is sometimes called the factorial function. Also, find Γ(1/2) =
√

π (and then

Γ(z + 1) = zΓ(z) gives e.g. Γ(3/2) = 1
2

√
π). The above Eqn. (1) follows upon setting

t = (x− x)2/2σ2 for n even (the integral clearly vanishes for n odd, since it’s then an odd

function of ∆x ≡ x − x, integrated over a range symmetric around ∆x = 0).

In particular, the n = 0 case of Eqn. (1) gives
∫ ∞

−∞
p(x)dx = 1, so p(x) is correctly

normalized. The n = 1 case of Eqn. (1) shows that
∫ ∞

−∞
xp(x) = x, so the x in p(x)

is indeed the mean value of x. The n = 2 case of (1) gives, upon defining ∆x ≡ x − x,

∆x2 = x2 − (x)2 = σ2. This shows how σ, which is the “standard deviation” sets the

width of the gaussian distribution. We can write ∆xRMS ≡
√

∆x2 = σ.

• The Maxwell-Boltzmann velocity distribution

F (~v) =
( m

2πkT

)3/2

exp(−1
2m~v2/kT ),

is a product of gaussian distributions F (~v) = p(vx)p(vy)p(vz), each with zero mean, vx =

vy = vz = 0 and standard deviation σ =
√

kT/m, so v2
x = v2

y = v2
z = kT/m, which is

the average energy equi-partition statement, 1
2
mv2

x = 1
2
kT etc. So vRMS =

√

v2 − v2 =
√

3kT/m. Also mean speed v =
∫ ∞

0
v(4πv2)F (v)dv =

√

8kT/πm. Most probable speed:

F (v)4πv2 is a maximum at f(v) is a maximum at vm.p. =
√

2kT/m.

• Write the Maxwell-Boltzman velocity distribution as an energy distribution: define

ε ≡ 1
2
mv2 and define p(ε)dε = p(v)dv = 4πF (v)v2dv. Using dε = mvdv and our expression

for F (v), and then writing v in terms of ε, this gives the energy distribution

p(ε)dε = 2π−1/2(kT )−3/2 exp(−ε/kT )ε1/2dε

which is the fraction of particles with energy in the range from ε to ε + dε. It is properly

normalized, as
∫ ∞

0
p(ε)dε = 1.
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• Effusion out of a hole in a box. Replace

f(vz) → f̃(vz) =

{

const.p(vz)vz for vz > 0
0 for vz < 0

.

Gives

v2
z =

∫ ∞

0

v2
z exp(−1

2
mv2

z/kT )vzdvz/

∫ ∞

0

exp(−1
2
mv2

z/kT )vzdvz

= 1
2
(2kT/m)2/ 1

2
(2kT/m) = 2kT/m

,

(using
∫ ∞

0
exp(−ax2)xndx = 1

2a−(n+1)/2Γ( 1
2 (n + 1))), vs. v2

x = v2
y = kT/m. Doesn’t

satisfy equi-partition, and now ε = 2kT - it’s increased. Eventually recover equipartition,

thanks to interactions. Equipartition is the most likely state. Effusion can be used to

separate molecules of different masses, as lighter ones are more likely to effuse out the

hole, as seen from the flux Φ = Nv/4V = P/
√

2πmkT .
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