
11/8 Lecture outline

• Last time: P , T diagram of e.g. H2O, with the solid, liquid, and gas phases.

If we plot instead a P , V diagram, we see the phase changes as plateaus, along which

V changes but T and P are constant. Because P and T are fixed, the useful quantity

is G. The correct phase is the one which minimizes G. Consider phases 1 and 2, e.g.

liquid and gas respectively. Convert an amount δn of the material from phase 1 to phase

2, δn2 = −δn1 = δn. Write G = n1g1 + n2g2 (neglecting surface effects). Vary the

parameters other than T and P ,

δG = −(g1 − g2)δn.

So the equilibrium phase boundary is when

g1(T, P ) = g2(T, P ).

Varying this, and using s = −(∂g/∂T )V and v = (∂g/∂p)T , we get

−s1dT + v1dP = −s2dT + v2dP.

Write this as
dP

dT
=

S2 − S1

V2 − V1

=
`

Tδv
,

where ` is the (specific) latent heat. This is called the “Clausius-Clapeyron” equation.

• Example: suppose v2 � v1, and Pv2 = RT , then the above equation becomes

dP

P
=

`dT

RT 2
,

which integrates to P = P0 exp(−`/RT ). This is the vapor pressure, which rapidly increases

with T .

• Suppose

S = S(U, V, n1, . . . nm).

Define the chemical potentials by

µj ≡ −T

(

∂S

∂nj

)

U,V,ni 6=j

.

Let particle numbers vary, then

dU = TdS = PdV +
∑

i

µidni.
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Now we find

µi =

(

∂U

∂ni

)

S,V,nj 6=i

, T =

(

∂U

∂S

)

V,ni

, P = −

(

∂U

∂V

)

S,ni

.

We similarly obtain

µi =

(

∂F

∂ni

)

T,V,nj 6=i

=

(

∂G

∂ni

)

P,T,nj 6=i

=

(

∂H

∂ni

)

P,S,nj 6=i

.

Note that µ is an intensive quantity, since it is the ratio of extensive quantities. Also

remark that often µ < 0, because adding a particle, with S held fixed, requires that U be

reduced.

• We have dU = TdS −PdV +µidni. Now rescale all extensive quantities by a factor

of λ, and require the dU equality is preserved for all λ. This requires

U = TS − PV + µini.

Note that this implies that

G(T, P ) =
∑

i

µini (!)

It follows that

µi = µi(T, P ) = gi(T, P ),

so
(

∂µi

∂T

)

P

= −S/n ≡ −s, and

(

∂µi

∂P

)

T

= V/n ≡ v.

• Consider systems 1 and 2, given by (n1, T1, P1) and (n2, T2, P2). Put them in contact

and remove the wall. Get

dS = dS1 + dS2 =

(

1

T1

−
1

T2

)

dU1 +

(

P1

T1

−
P2

T2

)

dV1 −

(

µ1

T1

−
µ2

T2

)

dn ≥ 0.

The two systems are in equilibrium with each other iff this vanishes for all variations, i.e.

T1 = T2 and P1 = P2 and µ1 = µ2. Otherwise, get dS > 0. If dU1 > 0, see that T2 > T1.

If dV1 > 0, see that P1/T1 > P2/T2, which for T1 = T2 gives P1 > P2. If dn1 > 0, see

that µ1/T1 < µ2/T2, which for T1 = T2 gives µ1 < µ2. Particles want to go into region of

smaller chemical potential.

• Example: the atmosphere has µ(T, P, z) = µ0(T, P ) + mgz, which should be a

constant for equilibrium.
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