11/6 Lecture outline
e Recall,
AWmeen < dW |maz = —d(U — ToS + PyV) = —dA,

where we define
A(S,V)=U —-ToS + B\V.

e Mention dW = dW,,,ech + PodV', where dW ¢ can also include other kinds of work,
AW e, = PAV + Edq + B-dM + E -dP + pdn + . .... The above formula applies to all
types of work, not just PdV work.

e Example: two identical blocks, with initial temperatures T4 ; and T5;. What is
the maximum work that can be extracted? Solution: hook them up to a Carnot engine.
Maximum work when everything is reversible. This means that the total entropy of the
combined system of blocks, plus engine, should be constant. Since ASc,gine = 0, this
means ASiorar = AS7 + ASsy should be zero. Implies that 7175 must be constant. Im-
plies that T y = Ty 5 = \/m The above formula, with S and V' constant, implies
AW e = —AU = —(AU; + AU;) = —C( QW T, —T5,) > 0.

e This illustrates a general kind of question that often comes up in thermodynam-
ics. We start of being limited to consider equilibrium situations, because non-equilibrium
processes are hard. But then broaden scope by consider bringing together two equilib-
rium subsystems, and study how the combined system reaches equilibrium. In general this

happens such that
dA <0, with dA =0 when equilibrium is restored.

The above example had S constant and V' constant, and so we get dU < 0, with dU = 0
at equilibrium. In other words, for fixed S and V', the process reaches equilibrium when
U is minimized.

We can instead impose U = U; +Us fixed, with V' = V; 415 fixed, and then equilibrium
is reached when S = 57 + 55 is maximized.

e Connect to interpretation of other thermodynamic potentials, H = U + PV, and
F=U-ST, and G = U + PV — ST. Suppose AS = 0 and P = P, then we get
AWpeen < —AH. Or if T =Ty and AV = 0, then AW, een < —AF. Or if T = Ty and
P = Py, then AW, ecrn < —AG. Now Suppose no mechanical work, dW,,c., = 0. Again,
dA < 0. Processes occurring in the system tend to decrease A. It reaches its minimum

at equilibrium. For fixed Py = P and Ty = T, the process reaches equilibrium when G
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is a minimum. Likewise, for fixed T" and V', the process reaches equilibrium when F' is a
minimum. Likewise, for fixed S and P, it reaches equilibrium when H is a minimum. For
fixed S and V, the process reaches equilibrium when U is minimized. Equivalently, for
fixed U and V, the process reaches equilibrium when S is maximized.
e Let’s show in more detail that A decreases until it reaches its minimum, when the
system is in equilibrium. Note that A is extremized if T =Ty and P = Py:
%:%:O for T=1T, and P =PF,.

To show that this extremum is a minimum of A, note that, expanding near T = Ty and
P = Py, and using T'— Ty = (0A/0S)y and P — Py = —(0A/0V)g, we get

oT orT oP
_ 1 2 _1 — 2
A_AO+2<8S)V<AS) +(8V)SASAV 2((9V)S(AV) NI

We see that A > Ag provided that

oT
— >0 which is equivalent to Cy >0,
oS ),

oP
( ) <0 which is equivalent to kg >0,
S

6[/

e Recall the P, T diagram of e.g. H50O, with the solid, liquid, and gas phases. If we plot
instead a P, V diagram, we see the phase changes as plateaus, along which V' changes but T’
and P are constant. Because P and T are fixed, the useful quantity is G. The correct phase
is the one which minimizes G. Consider phases 1 and 2, e.g. liquid and gas respectively.
Convert an amount dn of the material from phase 1 to phase 2, 0ny = —dn; = on. Write

G = ny191 + n2g2 (neglecting surface effects). Vary the parameters other than 7' and P,
0G = —(g1 — g2)on.
So the equilibrium phase boundary is when
91(T, P) = g2(T, P).
Varying this, and using s = —(9¢g/0T")y and v = (0g/0p)r, we get
—51dT 4+ v1dP = —sodT + vodP.

2



Write this as
dP Sy -5 /4

dT ~ Vo—Vi  Tév’
where ( is the (specific) latent heat. This is called the “Clausius-Clapeyron” equation.

e Example: suppose vy > v1, and Pvy, = RT, then the above equation becomes

dP _ dT

P  RT?

which integrates to P = Py exp(—¢/RT). This is the vapor pressure, which rapidly increases
with T

e Next time: the above is a segue into discussing open systems, and chemical potential



