
11/6 Lecture outline

• Recall,

/dWmech ≤ |/dW |max = −d(U − T0S + P0V ) ≡ −dA,

where we define

A(S, V ) = U − T0S + P0V.

• Mention /dW = /dWmech+P0dV , where /dWmech can also include other kinds of work,

/dWmech = PdV + Edq + ~B · d ~M + ~E · dP + µdn + . . . .. The above formula applies to all

types of work, not just PdV work.

• Example: two identical blocks, with initial temperatures T1,i and T2,i. What is

the maximum work that can be extracted? Solution: hook them up to a Carnot engine.

Maximum work when everything is reversible. This means that the total entropy of the

combined system of blocks, plus engine, should be constant. Since ∆Sengine = 0, this

means ∆Stotal = ∆S1 + ∆S2 should be zero. Implies that T1T2 must be constant. Im-

plies that T1,f = T2,f =
√

T1,iT2,i. The above formula, with S and V constant, implies

∆Wmax = −∆U = −(∆U1 + ∆U2) = −C(2
√

T1,iT2,1 − T1,i − T2,i) > 0.

• This illustrates a general kind of question that often comes up in thermodynam-

ics. We start of being limited to consider equilibrium situations, because non-equilibrium

processes are hard. But then broaden scope by consider bringing together two equilib-

rium subsystems, and study how the combined system reaches equilibrium. In general this

happens such that

dA ≤ 0, with dA = 0 when equilibrium is restored.

The above example had S constant and V constant, and so we get dU ≤ 0, with dU = 0

at equilibrium. In other words, for fixed S and V , the process reaches equilibrium when

U is minimized.

We can instead impose U = U1+U2 fixed, with V = V1+V2 fixed, and then equilibrium

is reached when S = S1 + S2 is maximized.

• Connect to interpretation of other thermodynamic potentials, H = U + PV , and

F = U − ST , and G = U + PV − ST . Suppose ∆S = 0 and P = P0, then we get

∆Wmech ≤ −∆H. Or if T = T0 and ∆V = 0, then ∆Wmech ≤ −∆F . Or if T = T0 and

P = P0, then ∆Wmech ≤ −∆G. Now Suppose no mechanical work, /dWmech = 0. Again,

dA ≤ 0. Processes occurring in the system tend to decrease A. It reaches its minimum

at equilibrium. For fixed P0 = P and T0 = T , the process reaches equilibrium when G
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is a minimum. Likewise, for fixed T and V , the process reaches equilibrium when F is a

minimum. Likewise, for fixed S and P , it reaches equilibrium when H is a minimum. For

fixed S and V , the process reaches equilibrium when U is minimized. Equivalently, for

fixed U and V , the process reaches equilibrium when S is maximized.

• Let’s show in more detail that A decreases until it reaches its minimum, when the

system is in equilibrium. Note that A is extremized if T = T0 and P = P0:

∂A

∂S
=

∂A

∂V
= 0 for T = T0 and P = P0.

To show that this extremum is a minimum of A, note that, expanding near T = T0 and

P = P0, and using T − T0 = (∂A/∂S)V and P − P0 = −(∂A/∂V )S, we get

A = A0 + 1

2
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We see that A > A0 provided that

(

∂T

∂S

)

V

> 0 which is equivalent to CV > 0,

(
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)

S

< 0 which is equivalent to κS > 0,
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.

• Recall the P , T diagram of e.g. H2O, with the solid, liquid, and gas phases. If we plot

instead a P , V diagram, we see the phase changes as plateaus, along which V changes but T

and P are constant. Because P and T are fixed, the useful quantity is G. The correct phase

is the one which minimizes G. Consider phases 1 and 2, e.g. liquid and gas respectively.

Convert an amount δn of the material from phase 1 to phase 2, δn2 = −δn1 = δn. Write

G = n1g1 + n2g2 (neglecting surface effects). Vary the parameters other than T and P ,

δG = −(g1 − g2)δn.

So the equilibrium phase boundary is when

g1(T, P ) = g2(T, P ).

Varying this, and using s = −(∂g/∂T )V and v = (∂g/∂p)T , we get

−s1dT + v1dP = −s2dT + v2dP.
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Write this as
dP

dT
=

S2 − S1

V2 − V1

=
`

Tδv
,

where ` is the (specific) latent heat. This is called the “Clausius-Clapeyron” equation.

• Example: suppose v2 � v1, and Pv2 = RT , then the above equation becomes

dP

P
=

`dT

RT 2
,

which integrates to P = P0 exp(−`/RT ). This is the vapor pressure, which rapidly increases

with T .

• Next time: the above is a segue into discussing open systems, and chemical potential
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