10/12 Lecture outline

• Arbitrary system \mathcal{O} undergoing arbitrary cyclic process. Couple to lots of little Carnot engines/refrigerators, \mathcal{C} , whose heat output is \mathcal{O} 's input. In combined system, would violate Kelvin's statement unless

$$\oint \frac{dQ}{T_{ext}} \le 0.$$

And for a reversible cycle, $T_{ext} = T$, and can reverse to get similar inequality with $dQ \rightarrow -dQ$, so

$$\oint \frac{dQ_R}{T} = 0.$$

• So $dQ_R/T = dS$ is a state variable!

- So $S(B) S(A) = \int_{A}^{B} dQ_{R}/T$ over any reversible path.
- Thus $\int_A^B dQ/T \le S(B) S(A)$, equality iff reversible.

• Entropy of thermally isolated $(\not dQ = 0)$ system never decreases. Thermally isolated system is in state of maximum entropy, consistent with external constraints.

• Examples: reversible isothermal expansion of ideal gas; free expansion of ideal gas; general process with ideal gas; systems of different temperatures put in thermal contact.