10/10 Lecture outline

• Use Carnot engine to define temperature θ : $\eta = 1 - \Theta_C/\Theta_H$. Lots of C-engines in series, defines Θ temperature scale. Agrees with previous definition, $\Theta = T$ (!).

• A system undergoes cyclic process. Absorbs heat Q_1 from reservoir at temperature T_1 and Q_2 from one at temperature T_2 . Carnot says $(1 + Q_1/Q_2) \leq (1 - T_1/T_2)$. E.g. $T_1 = T_C$, $T_2 = T_H$, and $Q_1 = -|Q_C| < 0$, $Q_2 = Q_H > 0$. So $(Q_1/T_1) + (Q_2/T_2) \le 0$, with equality holding iff the cycle is reversible.

• Arbitrary system $\mathcal O$ undergoing arbitrary cyclic process. Couple to lots of little Carnot engines/refrigerators, \mathcal{C} , whose heat output is $\mathcal{O}'s$ input. In combined system, would violate Kelvin's statement unless

$$
\oint \frac{dQ}{T_{ext}} \le 0.
$$

And for a reversible cycle, $T_{ext} = T$, and can reverse to get similar inequality with $dQ \rightarrow$ $-\phi Q$, so

$$
\oint \frac{dQ_R}{T} = 0.
$$

- So $dQ_R/T = dS$ is a state variable!
- So $S(B) S(A) = \int_A^B dQ_R/T$ over any reversible path.
- Thus $\int_A^B \phi Q/T \leq S(B) S(A)$, equality iff reversible.

• Entropy of thermally isolated $(dQ = 0)$ system never decreases. Thermally isolated system is in state of maximum entropy, consistent with external constraints.

• Examples