
11/30 Lecture outline

• Last time we started the following: first try at 1d SHO partition function:

Z =

∫

dpdx

h
e−p2/2mkT e−mω2x2/2kT = h−1

√
2πmkT

√

2πkT/mω2 =
kT

hν
,

where ω = 2πν. Then

ε = kT 2
∂

∂T
lnZ = kT,

which is the classical equi-partition of energy, accounting for K.E. = P.E = 1

2
ε. In this

case, for N 3d H.O.s, U = 3NkT and CV = 3Nk, twice that of monatomic ideal gas.

We can do better: use the Q.M. energies of H.O., εn = (n + 1

2
)hν. Compute

Z =
∞
∑

n=0

e−εn/kT = e−hν/2kT
∞
∑

n=0

(e−hν/kT )n = e−hν/2kT 1

1 − e−hν/kT
.

where we used gn = 1, and summed the geometric series. For high temperature, this gives

Z ≈ kT/hν, which agrees with the approximate answer above. The energy is

U = 3NkT 2
∂

∂T
lnZ = 3N

[

1

2
hν +

hν

ehν/kT − 1

]

.

For T → 0, this gives U → 3N( 1

2
hν), all the H.O.s are in their groundstate. For high

temperature, kT � hν, on the other hand, we expand the above to get U ≈ 3N( 1

2
hν +

kT − 1

2
hν) = 3NkT , which is the classical equipartition answer.

• Einstein theory for C of solid. N atoms ≈ 3N distinguishable 1d SHOs.

U = 3NkT 2
∂

∂T
lnZ = 3N

[

1

2
hν +

hν

ehν/kT − 1

]

.

CV =

(

∂U

∂T

)

V

= 3Nk(θE/T )2
eθE/T

(eθE/T − 1)2
,

with θE ≡ hν/k. For T � θE , get CV ≈ 3Nk. For T � θE , get CV ≈ 3Nk(θE/T )2e−θE/T .

When θE/T is small, we have the equipartition expression, including the vibrational d.o.f..

When θE/T is large, the vibrational d.o.f. is not excited – the atom is in the groundstate.

Note that θE ∼ ν ∼
√

κ/µ is large for light elements or those that are very stiff, e.g.

for diamond θE = 1450K. A single curve gives a very good approximation for CV (T ), for

different solids (measurement at one value of T suffices to determine θE) and temperatures.

However, discrepancies for range T ∼ θE and below.
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• Debye’s improvement: replace atom oscillators with phonon field. Sound wave in

cubic box, of side length L, stationary waves are

Φ = A sin(nxπx/L) sin(nyπy/L) sin(nzπz/L),

with frequency ν = cn/2L, where c is here the speed of sound and n ≡
√

n2
x + n2

y + n2
z.

The approximate number of modes in range dν is

g(ν)dν =
1

8
4πn2dn =

4πV

c3
ν2dν,

or more precisely

g(ν)dν = 4πV (c−3

l + 2c−3

t )ν2dν,

where cl and ct are the longitudinal and transverse sound speeds. The maximum frequency

is determined by

3N =

∫ νm

0

g(ν)dν =
4πV

3
(c−3

l + 2c−3

t )ν3

m.

So

g(ν)dν = 9Nν−3

m ν2dν,

(v.s. Einstein’s model, where only one frequency enters). Since phonons are bosons, use

ωBE , which is maximized by occupation numbers

N(ν)dν =
g(ν)dν

ehν/kT − 1
=

{

9Nν−3

m
ν2dν

ehν/kT
−1

ν ≤ νm

0 ν > νm.

The total energy is

U =

∫

hνN(ν)dν =
9

8
Nhνm + 9Nhν−3

m

∫ νm

0

ν3dν

ehν/kT − 1
.

This gives

CV = 9Nkx−3

m

∫ xm

0

x4ex

(ex − 1)2
dx,

with xm ≡ hνm/kT ≡ θD/T , where θD is the “Debye temperature.” For xm � 1 (high

temperature), this gives CV ≈ 3Nk, as expected. For low temperature, this gives CV ≈
1

5
12π4Nk(T/θD)3; valid for T below 0.1θD ∼ 10 − 20K. Better fit to low-T data than

Einstein’s model.
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