
11/28 Lecture outline

• Now let’s instead maximize the correct quantum counts of microstates

ω({Ni})B.E. =
∏

i

(Ni + gi − 1)!

Ni!(gi − 1)!
bosons

ω({Ni})F.D. =
∏

i

gi!

Ni!(gi − Ni)!
fermions.

• Bose Einstein case:

lnωB.E. ≈
∑

i

[(Ni + gi − 1) ln(Ni + gi − 1) − Ni lnNi − (gi − 1) ln(gi − 1)],

where we used Stirling’s approximation. With the Lagrange multipliers to enforce N =
∑

i Ni and U =
∑

i Niεi, as in last lecture, we find

ln(Ni + gi − 1) − lnNi + α + βεi = 0.

which gives

N∗

i = (gi − 1)
1

e−α−βεi − 1
≈ gi

1

e−α−βεi − 1
,

where we took gi � 1 for the last step. The above result differs from M.B. thanks to the

−1 in the denominator. We also get

lnωB.E.({N∗

i }) =
∑

i

[N∗

i ln((N∗

i + gi − 1)/N∗

i ) + (gi − 1) ln(((N∗

i + gi − 1)/(gi − 1))]

= −kαN − kβU − k
∑

i

gi ln(1 − eα+βεi)

And now comparing with S = 1

T
U + PV

T
− 1

T
µN we have α = µ/kT and β = −1/kT , as

before, but now the equation of state is

PV = −kT
∑

i

gi ln(1 − eα+βεi).

And S = k lnωmax, without the need to put in by hand the 1/N ! as in the MB case.

• Fermi Dirac case:

lnωF.D. ≈
∑

i

[gi ln gi − Ni lnNi − (gi − Ni) ln(gi − Ni)],
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This is maximized for

ln((gi − Ni)/N1) + α + βεi = 0,

which gives

N∗

i = gi
1

e−α−βεi + 1
.

Note that this properly satisfies N∗

i ≤ gi. Again, α = µ/kT , and β = −1/kT and

S ≈ k lnωmax, and now

PV = kT
∑

i

gi ln(1 + eα+βεi).

• Summarize,
N∗

i

gi
=

1

e−α−βεi + a

with a = −1 for Bose case (integer spin, e.g. photons), a = +1 for Fermi case (odd

half-integer spin, e.g. electrons), and a = 0 for the M.B. case. Plot this as a function of

x = (εi − µ)/kT . These cases all agree in the classical limit, which is where x � 1 i.e.

where

e−α−βεi � 1

, i.e. when

N∗

i /gi � 1.

Since N∗

i /gi = (N/Z)e−εi/kT , the system behaves classically if

N � Z

Which for a monatomic gas becomes

h√
2πmkT

�
(

V

N

)1/3

.

In words: the thermal wavelength (LHS) should be small compared to the inter-particle

distance.

In the classical limit µ = kT ln(N/Z) is very negative. Decreasing T then decreases x,

and eventually the physics of the MB, BE, FD distinction becomes important. Note that

in the classical limit, all the above equations of state simply reduce to the ideal gas law,

PV = NkT .

• BE case: µ → 0 at finite T , and then N∗

i diverges for εi = 0. This is Bose

condensation.
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• FD case: at low temperature, µ becomes positive, so that N∗

i
∼= 1 for εi < µ and

zero for εi > µ. This has important consequences. It’s called the Fermi-liquid theory of

low-temperature metals.

• New topic: system of harmonic oscillators, in equilibrium at temperature T . Take

each H.O. to be non-interacting with the rest, so can study single H.O.. Take them to be

distinguishable, so can use M.B. statistics. 3d H.O. is the sum of 3 1d H.O.s. For 1d H.O.,

we have ε = p2/2m + 1

2
mω2x2. Partition function:

Z =

∫

dpdx

h
e−p2/2mkT e−mω2x2/2kT = h−1

√
2πmkT

√

2πkT/mω2 =
kT

hν
,

where ω = 2πν. Then

ε = kT 2 ∂

∂T
lnZ = kT,

which is the classical equi-partition of energy, accounting for K.E. = P.E = 1

2
ε. In this

case, for 3d H.O.s, U = 3NkT and CV = 3Nk, twice that of monatomic ideal gas.

Now instead use Q.M. energies of H.O.: εn = (n + 1

2
)hν. Compute

Z =
∞
∑

n=0

e−εn/kT = e−hν/2kT
∞
∑

n=0

(e−hν/kT )n = e−hν/2kT 1

1 − e−hν/kT
.

where we used gn = 1, and summed the geometric series. For high temperature, this gives

Z ≈ kT/hν, which agrees with the approximate answer above. The energy is

U = 3NkT 2 ∂

∂T
lnZ = 3N

[

1

2
hν +

hν

ehν/kT − 1

]

.

For T → 0, this gives U → 3N( 1

2
hν), all the H.O.s are in their groundstate. For high

temperature, kT � hν, on the other hand, we expand the above to get U ≈ 3N( 1

2
hν +

kT − 1

2
hν) = 3NkT , which is the classical equipartition answer.
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