
11/16 Lecture outline

• Last time:

S(U, N, ...) = k ln Ω(U, N, ...) ≈ k lnωmax.

Ω(U, N) =
∑

{Ni}

′

ω({Ni}),

where the prime is a reminder that the {Ni} must satisfy
∑

i Ni = N and
∑

i Niεi = U .

• For distinguishABLE particles, the number of states states with a given set of {Ni}

is

ω({Ni}) = N !
n

∏

i=1

gNi

i

Ni!
,

here i labels the energy levels, or cells, and gi is the number of states with energy εi (or

states in that cell). This is the number of ways of putting Ni out of the N particles in cell

i.

• But Gibbs tells us to get rid of the N !. This is related to a question in class about

entropy of mixing, upon removing a partition, when the particles on the two sides are the

same (this is called Gibbs’ paradox). Recall from thermodynamics ∆S = Nk ln(Vf/Vi) +
3
2Nk ln(Tf/Ti) for monatomic ideal gas. This tells us

S = Nk lnV +
3

2
Nk lnT + f(N).

Soon we will see what the f(N) is. It is reasonable to expect f(N) = aN + b for constants

a and b, since entropy is extensive, and that is indeed what we’ll find. Gibb’s paradox is

that if we then have N1 atoms in volume V1 and N2 in volume V2 and then take away the

partition, all the atoms are now in the larger volume V = V1 + V2. If it’s free expansion,

the energies are unchanged, and

∆S = kN1 ln(V/V1) + kN2 ln(V/V2) > 0,

which is correct if the atoms are different. But this is incorrect if they’re of the same

type and the process is reversible (which requires that P1 = P2 and T1 = T2, so N1/V1 =

N2/V2 = (N1 + N2)/(N1 + V2); in this case we should instead get ∆S = 0. Gibb’s recipe

to fix this has to do with the f(N). He says that

S = Nk ln(V/N) +
3

2
Nk lnU + aN + b

for constants a and b. This amounts to dividing Ω by NN ≈ N !.
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• So

ω({Ni})M.B. =
n

∏

i=1

gNi

i

Ni!
.

Now let’s briefly discuss QM and identical particles. For identical particles, we should

replace the configuration number

N !
∏

i

1

Ni!
→ 1,

since they different orderings of the particles are now meaningless. But we’re not finished!

We also need to replace the
∏

i gNi

i factor with something more appropriate, and that

depends on whether the particles are bosons or fermions. We then get

ω({Ni})B.E. =
∏

i

(Ni + gi − 1)!

Ni!(gi − 1)!
bosons

ω({Ni})F.D. =
∏

i

gi!

Ni!(gi − Ni)!
fermions.

Discuss why. As we’ll discuss, the M.B., B.E., and F.D. cases all agree in the classical limit

(which we’ll see is when (εi − µ) � kT ). This is the justification for studying the M.B.

distribution: it’s physically wrong, but it’s a bit simpler and it gives approximately right

answers in some appropriate limit.

• Back to the M.B. distribution. Maximize it over microstates, subject to the con-

straints that we reproduce the macroscopic U and N . Using Stirling’s approximation

(taking all Ni large) we have

lnωM.B.({Ni}) =

n
∑

i=1

Ni ln gi − lnNi! ≈
∑

i

Ni

[

ln

(

gi

Ni

)

+ 1

]

.

We want to maximize this, over all Ni, subject to the constraints N =
∑

i Ni and U =
∑

i Niεi. Use Lagrange mulipliers to enforce these constraints. So maximize

∑

i

Ni

[

ln

(

gi

Ni

)

+ 1 + α + βε

]

,

over all Ni, where α and β are Lagrange multipliers. Get that ω is maximized for Ni = N∗
i ,

given by

N∗
i = gi exp(α + βεi),
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lnωmax ≈ −αN − βU + N.

Recall from thermodynamics that

U − TS + PV ≡ G = µN,

so

S = −
µ

T
N +

1

T
U +

PV

T

Compare with

k lnωmax ≈ kαN − kβU + kN.

Fits with

PV = NkT

α = µ/kT

β = −1/kT

• So

N∗
i = gie

(µ−εi)/kT ≡ gie
α+βεi ,

and we still need to enforce

N =
∑

i

N∗
i = eα

∑

i

gie
βεi

U =
∑

i

N∗
i εi = eα

∑

i

giεie
βεi .
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