11/14 Lecture outline

e Binomial distribution: recall

and
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NZ= > Nip(Ni) = <pa—p> (p+9)™ = (N1)? + Npg.
N1=0

So (AN7)2 = Npq. Le. (AN1)rms = v/ Npq. Define x = N; /N, so T = p and Azgys =
(AN rars/N = +/(pq)/v/N. Very sharply peaked around z = T for large N.

e For very large N, use Stirling’s approximation:

n! =~ vV2mn <E> for n > 1.
e

Use this to approximate ]]\\; when N and Nj are both large. Write x = Ny /N and
1
replace p(N7) with p(x) = Np(Ny) (since p(z)dx = p(N1)ANy, with de = AN;/N). Using

Stirling’s approximation (along with a Taylor’s series approximation) gives

1

2o

1/2
exp(—(x — 5)2/202) with T=p and o= (ZE> ,

p(z) — ~

i.e. we get the Gaussian distribution. This is the law of large numbers: large samples
become gaussian. Note that the gaussian has height ~ /N, and width ~ 1/v/N. For
N — o0, the probability distribution becomes a delta function: p(z) — §(z — p).

e Omit in class, but if you're interested here are the details of how to get the gaus-

sian via Stirling’s approximation (along with a Taylor’s series approximation). Write

In (lj\\[[ ) =InN!—In(Nz)! —In(N — Nz)!. Using Stirling for each of the 3 terms, we have
1

N
1n(N1) ~NInN—N+1InN + 1n(27)
— [NzIn(Nz) + Nz + 3 In(Nz) + 5 In(27)]

— [N1—=z)In(N(1 —2)) + 5 In(N(1 — 2)) + 5 In(27)].

1



Expand this out and collect the terms. This function is peaked at x = 1/2, so Taylor

expand it in x, around x = 1/2, and keep just the lowest order term involving x:

ln<]]\\[[1> ~NIn2— %lnN— %IH(W/Q)_QN(m_ %)2—1-0(3:— %)4,

where the last term means order (z — %)4 and higher, and we now drop those terms,

because their coefficients are all tiny (i.e. the function is sharply peaked). Exponentiating

N oV [ 2 exp(aN(z — 1)),
(%)=Y=

This will give the quoted gaussian for the case p = q =

the above then gives

%. For general p and ¢, when

we multiply this by pV*¢N(1=?) we get a function that is instead peaked at z = p. We

should then Taylor expand In instead around z = p. Doing that, and multiplying

N
Ny
by pN*gN(1=%)  gives the gaussian quoted above.

e Multi-nomial distribution: fix N =Y. | N;; probability of a given set {N;} is

p({Ni}) N'le

where 2?21 p; = 1. Note that these are properly normalized, since

> PN} = sz =1,

{vi}

where the ’ means to sum over all N;, subject to the constraint that > ;" N; = N.

e Statistical interpretation of entropy. Macro-state is specified by e.g. N and U.
Micro-state is specified by e.g. {N;}, with N =3"" | N; and U = " | & N;. The number
of micro-states associated with a given macro-state is Q(N, U, ...). Boltzmann: the entropy
is S = f(Q) for some monotonically increasing function f. If system has isolated parts 1
and 2, then 2 = Q5 and S = 57 + 55, so conclude that

S=kIn.

For large N, we can also replace 2 ~ w4z, Where wy,., is the number of states in the
most probable configuration. We will later justify the fact that the constant k is the same
one appearing in the ideal gas law, PV = NkT. (Recall n = N/N4 and R = Nk, where
N4 = 6.02 x 10?% particles/kilomole.)



e Each energy level in the quantum theory (or cell in the classical theory) has
a degeneracy factor. KE.g. consider a free particle in a cube, with sides of length
L. To enumerate the available states, it’s simpler to consider the quantum theory
(otherwise must pixelize phase space by hand, as a regulator). The QM wavefunc-
tion is ¢ = Asin(ngma/L)sin(nymy/L)sin(n,wz/L), where n; = 1,2,..., and energy is
e = m2h*n?/2mL?), where we define n? =n2+ ”3 +n2. The groundstate has n} =3, and

there is a unique such state. The first excited state has n? = 6, and there are g; = 3 such
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j

of states in the range from n to n + dn is N(n)dn ~ g4wn?dn, where the 1/8 is because

all n; > 0. Let’s use de = 72h*ndn/mL? to get

possibilities. The next excited state has n 9 and again g; = 3. For large n, the number

ATV /2

Ok m3/2e /2 de.

1
g(€)de = N(n)dn = §47r(2mL26/7r2h2)1/2(mL2de/7r2h2) =
For fermions, we should multiply this by 2, for the possible two spin states (up or down).
e Boltzmann distribution: the number of energy states with a given set of {NV;} is

n gNl

=1

here i labels the energy levels, or cells, and g; is the number of states with energy ¢; (or
states in that cell). Later we will omit the NV!. This is related to a question in class about
entropy of mixing, upon removing a partition, when the particles on the two sides are the
same (this is called Gibbs’ paradox). Each factor is the number of ways of putting N; out

of the N particles in cell i. The total number of states is
QU,N) = ) w({Ni}),
{Ni}

where the prime is a reminder that the {NN;} must satisfy > . N; = N and ), N;e; = U.
Next lecture: we’ll maximize w({N;}), and make contact with our results from ther-

modynamics.



