
11/14 Lecture outline

• Binomial distribution: recall

p(N1) =

(

N
N1

)

pN1qN2 ,

N1 =

N
∑

N1=0

N1p(N1) = p
∂

∂p
(p+ q)N = Np

and

N2
1 =

N
∑

N1=0

N2
1 p(N1) =

(

p
∂

∂p

)2

(p+ q)N = (N1)
2 +Npq.

So (∆N1)2 = Npq. I.e. (∆N1)RMS =
√
Npq. Define x ≡ N1/N , so x = p and ∆xRMS =

(∆N1)RMS/N =
√

(pq)/
√
N. Very sharply peaked around x = x for large N .

• For very large N , use Stirling’s approximation:

n! ≈
√

2πn
(n

e

)n

for n� 1.

Use this to approximate

(

N
N1

)

when N and N1 are both large. Write x ≡ N1/N and

replace p(N1) with p(x) = Np(N1) (since p(x)dx = p(N1)∆N1, with dx = ∆N1/N). Using

Stirling’s approximation (along with a Taylor’s series approximation) gives

p(x) → 1√
2πσ

exp(−(x− x)2/2σ2) with x = p and σ =
(pq

N

)1/2

,

i.e. we get the Gaussian distribution. This is the law of large numbers: large samples

become gaussian. Note that the gaussian has height ∼
√
N , and width ∼ 1/

√
N . For

N → ∞, the probability distribution becomes a delta function: p(x) → δ(x− p).

• Omit in class, but if you’re interested here are the details of how to get the gaus-

sian via Stirling’s approximation (along with a Taylor’s series approximation). Write

ln

(

N
N1

)

= lnN !− ln(Nx)!− ln(N −Nx)!. Using Stirling for each of the 3 terms, we have

ln

(

N
N1

)

≈ N lnN −N + 1
2 lnN + 1

2 ln(2π)

− [Nx ln(Nx) +Nx+ 1
2 ln(Nx) + 1

2 ln(2π)]

− [N(1 − x) ln(N(1 − x)) + 1
2 ln(N(1 − x)) + 1

2 ln(2π)].
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Expand this out and collect the terms. This function is peaked at x = 1/2, so Taylor

expand it in x, around x = 1/2, and keep just the lowest order term involving x:

ln

(

N
N1

)

≈ N ln 2 − 1
2

lnN − 1
2

ln(π/2) − 2N(x− 1
2
)2 +O(x− 1

2
)4,

where the last term means order (x − 1
2)4 and higher, and we now drop those terms,

because their coefficients are all tiny (i.e. the function is sharply peaked). Exponentiating

the above then gives
(

N
N1

)

≈ 2N

√

2

πN
exp(−2N(x− 1

2
)2).

This will give the quoted gaussian for the case p = q = 1
2 . For general p and q, when

we multiply this by pNxqN(1−x), we get a function that is instead peaked at x = p. We

should then Taylor expand ln

(

N
N1

)

instead around x = p. Doing that, and multiplying

by pNxqN(1−x), gives the gaussian quoted above.

• Multi-nomial distribution: fix N =
∑n

i=1Ni; probability of a given set {Ni} is

p({Ni}) = N !
n

∏

i=1

pNi

i

Ni!
,

where
∑n

i=1 pi = 1. Note that these are properly normalized, since

∑

{Ni}

′

p({Ni}) = (
∑

i

pi)
N = 1,

where the ′ means to sum over all Ni, subject to the constraint that
∑n

i=1Ni = N .

• Statistical interpretation of entropy. Macro-state is specified by e.g. N and U .

Micro-state is specified by e.g. {Ni}, with N =
∑n

i=1Ni and U =
∑n

i=1 εiNi. The number

of micro-states associated with a given macro-state is Ω(N,U, . . .). Boltzmann: the entropy

is S = f(Ω) for some monotonically increasing function f . If system has isolated parts 1

and 2, then Ω = Ω1Ω2 and S = S1 + S2, so conclude that

S = k ln Ω.

For large N , we can also replace Ω ≈ ωmax, where ωmax is the number of states in the

most probable configuration. We will later justify the fact that the constant k is the same

one appearing in the ideal gas law, PV = NkT . (Recall n = N/NA and R = NAk, where

NA = 6.02 × 1026 particles/kilomole.)
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• Each energy level in the quantum theory (or cell in the classical theory) has

a degeneracy factor. E.g. consider a free particle in a cube, with sides of length

L. To enumerate the available states, it’s simpler to consider the quantum theory

(otherwise must pixelize phase space by hand, as a regulator). The QM wavefunc-

tion is ψ = A sin(nxπx/L) sin(nyπy/L) sin(nzπz/L), where ni = 1, 2, . . ., and energy is

ε = π2h̄2n2/2mL2), where we define n2
j ≡ n2

x + n2
y + n2

z. The groundstate has n1
j = 3, and

there is a unique such state. The first excited state has n2
j = 6, and there are gj = 3 such

possibilities. The next excited state has n2
j = 9 and again gj = 3. For large n, the number

of states in the range from n to n + dn is N(n)dn ≈ 1
84πn2dn, where the 1/8 is because

all ni > 0. Let’s use dε = π2h̄2ndn/mL2 to get

g(ε)dε = N(n)dn =
1

8
4π(2mL2ε/π2h̄2)1/2(mL2dε/π2h̄2) =

4πV
√

2

(2πh̄)3
m3/2ε1/2dε.

For fermions, we should multiply this by 2, for the possible two spin states (up or down).

• Boltzmann distribution: the number of energy states with a given set of {Ni} is

ω({Ni}) = N !
n

∏

i=1

gNi

i

Ni!
,

here i labels the energy levels, or cells, and gi is the number of states with energy εi (or

states in that cell). Later we will omit the N !. This is related to a question in class about

entropy of mixing, upon removing a partition, when the particles on the two sides are the

same (this is called Gibbs’ paradox). Each factor is the number of ways of putting Ni out

of the N particles in cell i. The total number of states is

Ω(U,N) =
∑

{Ni}

′

ω({Ni}),

where the prime is a reminder that the {Ni} must satisfy
∑

iNi = N and
∑

iNiεi = U .

Next lecture: we’ll maximize ω({Ni}), and make contact with our results from ther-

modynamics.
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