
11/7 Lecture outline

• Now let’s figure out what F (~v) is. Note F (~v) = F (v) = f(vx)f(vy)f(vz), with

v =
√

v2
x + v2

y + v2
z . Take ∂vx

ln of both sides. Conclude that F (v) is of Gaussian normal

form:

F (~v) =
(α

π

)3/2

exp(−α~v2),

where α is a constant, and the normalization factor ensures
∫

F (~v)d3~v = 1. With this

distribution, we easily compute v2 = 3

2
α - this sets the size of the standard deviation of

the probability distribution. To get our desired relation, 1

2
mv2 = 3

2
kT , we see that we

need the probability distribution to have α = m/2kT , i.e.

F (~v) =
( m

2πkT

)3/2

exp(−1

2
m~v2/kT ),

This is the Maxwell-Boltzmann velocity distribution. It is sharply peaked around ~v when

T is small, and becomes a very broad distribution when T is large. This fits with our

intuition: larger T means more jiggling of the molecules.

• Review gaussian distribution:

p(x) =
1

√
2πσ

exp(−(x − x)2/2σ2),

where x is the mean and σ is the standard deviation. This distribution is common when

there are large numbers in the sample. Note that

∫ ∞

−∞

(x − x)np(x) =

{

1√
π
2n/2σnΓ( 1

2
(1 + n)) for n even

0 for n odd
(1)

Here Γ(z) ≡
∫ ∞

0
tz−1e−tdt is the gamma function. By an integration by parts (with u = tz

and dv = e−tdt), you can show the gamma function satisfies the interesting property:

Γ(z + 1) = zΓ(z). From this, it follows that Γ(n) = (n − 1)! for integer n, so the gamma

function is sometimes called the factorial function. Also, find Γ(1/2) =
√

π (and then

Γ(z + 1) = zΓ(z) gives e.g. Γ(3/2) = 1

2

√
π). The above Eqn. (1) follows upon setting

t = (x− x)2/2σ2 for n even (the integral clearly vanishes for n odd, since it’s then an odd

function of ∆x ≡ x − x, integrated over a range symmetric around ∆x = 0).

In particular, the n = 0 case of Eqn. (1) gives
∫ ∞

−∞
p(x)dx = 1, so p(x) is correctly

normalized. The n = 1 case of Eqn. (1) shows that
∫ ∞

−∞
xp(x) = x, so the x in p(x)

is indeed the mean value of x. The n = 2 case of (1) gives, upon defining ∆x ≡ x − x,

1



∆x2 = x2 − (x)2 = σ2. This shows how σ, which is the “standard deviation” sets the

width of the gaussian distribution. We can write ∆xRMS ≡
√

∆x2 = σ.

• The Maxwell-Boltzmann velocity distribution

F (~v) =
( m

2πkT

)3/2

exp(−1

2
m~v2/kT ),

is a product of gaussian distributions F (~v) = p(vx)p(vy)p(vz), each with zero mean, vx =

vy = vz = 0 and standard deviation σ =
√

kT/m, so v2
x = v2

y = v2
z = kT/m, which is

the average energy equi-partition statement, 1

2
mv2

x = 1

2
kT etc. So vRMS =

√

v2 − v2 =
√

3kT/m. Also mean speed v =
∫ ∞

0
v(4πv2)F (v)dv =

√

8kT/πm. Most probable speed:

F (v)4πv2 is a maximum at f(v) is a maximum at vm.p. =
√

2kT/m.

• Write the Maxwell-Boltzman velocity distribution as an energy distribution: define

ε ≡ 1

2
mv2 and define p(ε)dε = p(v)dv = 4πF (v)v2dv. Using dε = mvdv and our expression

for F (v), and then writing v in terms of ε, this gives the energy distribution

p(ε)dε = 2π−1/2(kT )−3/2 exp(−ε/kT )ε1/2dε

which is the fraction of particles with energy in the range from ε to ε + dε. It is properly

normalized, as
∫ ∞

0
p(ε)dε = 1.
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