
11/2 Lecture outline

• Gas has lots of particles. Typical densities: N/V ∼ 6 × 1026/22m3 ∼ 3 × 1025m−3.

Inter-particle distance ∼ (V/N)1/3 ∼ 10−8m, big compared with molecular sizes – approx-

imately non-interacting point particles.

• Velocity distribution F (~v), with

∫

F (~v)d3~v = 1.

F (~v)d3~v gives the fraction of particles with velocity in the range between ~v and ~v + d~v.

Suppose isotropically random distribution, F (~v) = F (v), depends only on speed, v = |~v|

not on direction of motion. Use spherical coordinates, where d3~v = v2 sin θdθdφdv. Recall
∫

sin θdθdφ = 4π. Then fraction of particles with speed in range between v and v + dv is

f(v) = F (v)4πv2. Satisfies
∫

∞

0
f(v)dv = 1. Use to compute averages

vn =

∫

(~v · ~v)n/2F (~v)d2~v =

∫

∞

0

vnf(v)dv.

• Consider the flux of particles through a tiny surface, with area element d~a = dan̂.

The flux of particles, per area da, per time, passing through this element is given by

N

V

∫

n̂·v>0

d3~vF (~v)n̂ · ~v =
N

4πV

∫

∞

0

dv

∫

1

0

dx

∫

2π

0

dφ(xvf(v)) =
1

4

N

V
v.

In the first expression, we use the fact that only particles with n̂ · v > 0 pass through the

area element – the others travel away. In the 2nd expression, we define x ≡ cos θ = v̂ · n̂

(where ~v = vv̂), and the fact that only particles with x > 0 pass through the area element

(which is why the x integral doesn’t go from −1 to +1) – the particles with x > 0 travel

toward the area element, and those with x < 0 travel away.

• The momentum imparted to area da, per unit area, per unit time – i.e. the normal

outward pressure – is similar to the flux, but with an extra factor of (2m~v · n̂), coming

from the fact that a particle which bounces off a wall reverses its normal momentum, and

thus imparts this momentum transfer or impulse to the wall.

P =
N

V

∫

n̂·v>0

d3~vF (~v)2m(n̂ · ~v)2 =
N

2πmV

∫

∞

0

dv

∫

1

0

dx

∫

2π

0

dφ(x2v2f(v)) =
1

3

N

V
mv2.

We thus have

PV =
2

3
U,

1



where U = N 1

2
mv2 is the average total kinetic energy. Hey, we’ve seen this before! Ideal

monatomic gas: PV = nRT , U = CV T = 3

2
nRT . If we eliminate T , we get PV = 2

3
U .

To complete the connection, we need to understand why

U = N 1

2
mv2 =

3

2
nRT i.e. why 1

2
mv2 =

3

2
kT,

where we use n = N/NA and k = R/NA, with NA = 6.02 × 1026 particles per kilomole.

We can extend this to diatomic and other ideal gases - then we have seen that

U = N
f

2
kT,

where f is the number of degrees of freedom. This last expression is called equipartition

of energy.

• Plug in some numbers: at room temperature, 3

2
kT ≈ 6 × 10−21J . Mass of e.g. O2

molecule is m = 32 × 1.66 × 10−27kg, so vrms ≈ 480m/s. Pretty fast! Note vsound ≈

340m/s. Makes sense: sound waves can’t travel faster than the molecules themselves.

• Now let’s figure out what F (~v) is. Argue it should be of the gaussian normal

distribution form:

F (~v) =
(α

π

)3/2

exp(−α~v2),

where α is a constant, and the normalization factor ensures
∫

F (~v)d3~v = 1. With this

distribution, we easily compute v2 = 3/2α - this sets the size of the standard deviation

of the probability distribution. To get our desired relation, 1

2
mv2 = 3

2
kT , we see that we

need the probability distribution to have α = m/2kT , i.e.

F (~v) =
( m

2πkT

)3/2

exp(−1

2
m~v2/kT ),

This is the Maxwell-Boltzman velocity distribution. It is sharply peaked around ~v when

T is small, and becomes a very broad distribution when T is large. This fits with our

intuition: larger T means more jiggling of the molecules.

• Mean speed: v =
∫

∞

0
vf(v)dv =

√

8kT/πm. v2 =
∫

∞

0
v2f(v)dv = 3kT/m, so

vRMS =
√

3kT/m. Most probable speed: f(v) is a maximum at vm.p. =
√

2kT/m.
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