- 1. Problem 13.-3 in book.
- 2. Consider a system of N distinguishable particles, at temperature T, with available energy levels ϵ_1 and $\epsilon_2 > \epsilon_1$ (only two available energy levels).

(a) Determine the equilibrium values of the occupation numbers N_1 and N_2 , and the energy U of the system, as a function of temperature.

(b) Show that the specific heat is given by

$$C_V = Nk \left(\frac{\Delta}{kT}\right)^2 \frac{e^{-\Delta/kT}}{(1+e^{-\Delta/kT})^2},$$

where $\Delta = \epsilon_2 - \epsilon_1$. Examine the low temperature and high temperature behavior of C_V/Nk , and sketch it as a function of kT/Δ .

- 3. Problem 13-8 in book.
- 4. Problem 13-9 in book.
- 5. Problem 14-6 in book.
- 6. Problem 15-2 in book. Note that the result of part (a) can be written as $S = -Nk \sum_{j} P_j \ln P_j$, where $P_j = N_j/N$ is the probability of occupying level j. In part (c), examine both the $T \to 0$ and $T \to \infty$ behavior.
- * . As preparation for the final, also do problems 16-1 and 16-3 in the book. These two problems do not need to be turned in.