Homework 7, due Nov. 16, 2006

- 1. Suppose you flip 1000 unbiased coins.
- (a) What is the probability of getting 500 heads and 500 tails? (Use Stirling's approximation.)
 - (b) What is the probability of getting 450 heads and 550 tails? (Use Stirling again.)
- (c) Compute the above two probabilities using the Gaussian approximation. How do they compare?
 - (d) Compute $\ln \Omega$ and $\ln \omega_{max}$. How do they compare?
 - 2. Suppose that a system has allowed energy levels $n\epsilon$, with $n = 0, 1, 2, 3, 4, \ldots$ There are three distinguishable particles, with total energy $U = 4\epsilon$.
- (a) Tabulate all possible distributions of the three particles among the energy levels, satisfying $U = 4\epsilon$.
 - (b) Evaluate ω_i for each of above distributions, and also $\Omega = \sum_i \omega_i$.
- (c) Calculate the average occupation numbers $\overline{N}_n = \sum_k N_{nk} \omega_k / \Omega$ for the three particles in the energy states. Here N_n is the average occupation number of the energy level with energy $n\epsilon$. You should find N_n for all $n \leq 4$ (and find that $N_{n>4} = 0$).
 - 3. A drunk guy is walking along the x axis. He starts at x=0, and his step size is L=0.5 meters. For each step, he has chance 2/3 of walking forwards (positive x) and chance 1/3 of walking backwards (negative x). What is his expected position, \overline{x} , after 50 steps? What is the expected RMS variation around \overline{x} , $\Delta x_{RMS} = \sqrt{(x-\overline{x})^2}$ after 50 steps?